Advertisement

13 Speeksel en smaakgewaarwording

Chapter
  • 844 Downloads

Samenvatting

  • Bij het merendeel van de patiënten met xerostomie treden klachten op over de smaakgewaarwording, hoewel er patiënten zijn met ernstige xerostomie zonder smaakklachten.

  • Vooral patiënten die cytostatica gebruiken, of die bestraald zijn in het hoofd-halsgebied, ondervinden hinderlijke smaakstoornissen door een direct effect van de ingestelde therapie op de smaakbekers en de verminderde speekselsecretie. In veel gevallen keert de smaakfunctie na enige tijd terug. De smaakgewaarwording kan wel blijvend zijn veranderd.

  • Vermindering van de smaakgewaarwording kan zijn gerelateerd aan verlaging van de zinkconcentratie in speeksel en in serum. Extra toevoeging van zink aan het dieet verbetert bij een deel van de patiënten de smaakfunctie.

  • Bij patiënten met hypogeusie kan verandering optreden in het zinkbevattende eiwit gustine en de prolinerijke eiwitten (PRP’s en bPRG). Onderzoek naar gustine suggereert dat de serumzinkspiegel in patiënten bepalend is voor de synthese en secretie van dit eiwit.

  • De moleculaire processen die betrokken zijn bij de transductie van een smaakstimulus in een neuronale stimulus, zijn mogelijk voor een deel analoog aan die bij bèta-adrenerge stimulatie van een perifere weefselcel: stimulatie van intracellulair adenylcyclase leidt tot verhoging van cAMP in de cel. Dit molecuul stimuleert een aantal biochemische processen, waaronder fosforylering van eiwitten. Dit zou kunnen leiden tot verandering van de Na+-geleiding over het synaptische membraan. Het Ca2+-bindende eiwit calmoduline speelt in dit proces een regulerende rol. Een smaakstimulus kan worden verlaagd door een verhoogde inactivering van cyclisch AMP onder invloed van fosfodi-esterase.

  • Aan het verlies van smaak- en reukfunctie liggen verschillende factoren ten grondslag. Het is moeilijk, zo niet onmogelijk, om eenduidig aan te geven in hoeverre bepaalde processen hierbij betrokken zijn. De meest universele stof voor de smaak- en reukgewaarwording is vermoedelijk zink.

Literatuur

  1. Aydin S. A comparison of ghrelin, glucose, alphaamylase and protein levels in saliva from diabetics. J. Biochem. Mol. Biol. 40, (2007)29–35.PubMedCrossRefGoogle Scholar
  2. Bartoshuk L.M. Chemical sensation: taste. In: R.L. Pollack en E. Kravitz, (eds). Nutrition on oral Health and Disease. Lea and Febiger, Philadelphia, 1985, pp 53–67.Google Scholar
  3. Beidler L.M. Taste. In: H. Autrum, et al, (eds). Handbook of Sensory Physiology, Vol. IV. Chemical Senses, part 2. Springer Verlag, Heidelberg, 1971.Google Scholar
  4. Beidler L.M. Biophysics and chemistry of taste. In: Handbook of Perception. Vol. VIA. Acad. Press Inc., 1978, pp 21–49.Google Scholar
  5. Benatru I., P. Terraux, A. Cherasse, G. Couvreur, M. Giroud en T. Moreau. Gustatory disorders during multiple sclerosis relapse. Revue Neurologique 159, (2003)287–292.PubMedGoogle Scholar
  6. Bennetto L., E.S. Kuschner en S.L. Hyman. Olfaction and taste processing in autism. Biol. Psychiatry 62, (2007)1015–1021.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Birch G.G. Sweeteners: a question of taste. Chemistry and Industry 3 february, (1997)90–94.Google Scholar
  8. Boyd I. Captopril-induced taste disturbance. The Lancet 342, (1993)304.CrossRefGoogle Scholar
  9. Brand J.G. Basic characteristics of glutamates and umami sensing in the oral cavity and the gut. J. Nutr. 130, (2000)942S–945S.PubMedGoogle Scholar
  10. Burguera-Pascu M., A. Rodriguez-Archilla, J.L. Burguera, M. Burguera, C. Rondon en P. Carrero. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection. Anal. Chim. Acta 600, (2007)214–220PubMedCrossRefGoogle Scholar
  11. Chandrashekar J., M.A. Hoon, N.J.P. Ryba en C.S. Zuker. The receptors and cells for mammalian taste. Nature 444, (2006)288–XXX.PubMedCrossRefGoogle Scholar
  12. Conte C., M. Ebeling, A. Marcuz, P. Nef en P.J. Andres-Barquin. Identification and characterization of human taste receptor genes belonging to the TAS2R family. Cytogenet. Genome Res. 98, (2002)45–53.PubMedCrossRefGoogle Scholar
  13. Cruz A. en B.G. Green. Thermal stimulation of taste. Nature 403, (2000)889–892.PubMedCrossRefGoogle Scholar
  14. Deems D.A. Spontaneous resolution of dysgeusia. Archs Otolararyngol. Head Neck Surg. 122, (1996)961–963.CrossRefGoogle Scholar
  15. Ferry A.-L.S., J.R. Mitchell, J. Hort, S.E. Hill, A.J. Taylor, S. Lagarrigue, e.a. In-mouth amylase activity can reduce perception of saltiness in starchthickened Foods. J. Agric. Food Chem. 54, (2006)8869–8873.PubMedCrossRefGoogle Scholar
  16. Formaker K. en M.E. Frank. Taste function in patients with oral burning. Chem. Senses 25, (2000)575–581.PubMedCrossRefGoogle Scholar
  17. Getchell T.V., R.L. Doty, L.M. Bartoshuk en J.B. Snow (eds). Smell and taste in health and disease. Raven Press, New York, 1991.Google Scholar
  18. Gil-Campos M., C.M. Aguilera, R. Canete en A. Gil. Ghrelin: a hormone regulating food intake and energy homeostasis. Br. J. Nutr. 96, (2006)201–226.PubMedCrossRefGoogle Scholar
  19. Goto T., M. Komai, B.P. Bryant en Y. Furukawa. Reduction in carbonic anhydrase activity in the tongue epithelium and submandibular gland in zinc-deficient rats. Int. J. Vitam. Nutr. Res. 70, (2000)110–118.PubMedCrossRefGoogle Scholar
  20. Gröschl M., M. Rauh, R. Wagner, W. Neuhuber, M. Metzler, G. Tamgüney, e.a. Identification of leptin in human saliva. J. Clin. Endocrin. Metab. 86, (2001)5234–5239.CrossRefGoogle Scholar
  21. Gröschl M., H.-G. Topf, J. Kratsch, J. Dötsch, W. Rachser en M. Rauh. Salivary leptin induces increased expression of growth factors in oral keratinocytes. J. Mol. Endocrin. 34, (2005)353–366.CrossRefGoogle Scholar
  22. Heckmann S.M., P. Hujoel, S. Habiger, W. Friess, M. Wichmann, J.G. Heckmann, e.a. Zink gluconate in the treatment of dysgeusia - a randomized clinical trial. J. Dent. Res. 84, (2005)35–38.PubMedCrossRefGoogle Scholar
  23. Henkin R.I. Zinc in taste function. A critical review. Biol. Trace Elem. Res. 6, (1984)263–280.PubMedCrossRefGoogle Scholar
  24. Henkin R.I., B.M. Martin en R.P. Agarwal. Decreased parotid saliva gustin/carbonic anhydrase VI secretion: an enzyme disorder manifested by gustatory and olfactory dysfunction. Am. J. Med. Sci. 318, (1999)380–391.PubMedCrossRefGoogle Scholar
  25. Henkin R.I., B.M. Martin en R.P. Agarwal. Efficacy of exogenous oral zinc in treatment of patients with carbonic anhydrase VI defiency. Am. J. Med. Sci. 318, (1999)392–404.PubMedCrossRefGoogle Scholar
  26. Ikeda M., T. Aiba, A. Ikui, A. Inokuchi, Y. Kurono, M. Sakagami, e.a. Taste disorders: a survey of the examination methods and treatments used in Japan. Acta Otolarygol. 125, (2005)1203–1210.CrossRefGoogle Scholar
  27. Keast R.S.J. en P.A.S. Breslin. An overview of binary taste-taste interactions. Food Qual. Pref. 14, (2002)111–124.CrossRefGoogle Scholar
  28. Kinnamon S.C. Taste reduction: linkage between molecular mechanisms and psychophysics. Food Qual. Pref. 7, (1996)153–159.CrossRefGoogle Scholar
  29. Kinnamon S.C. Taste transduction: a bitter-sweet beginning. Nature 381, (1996)737–738.PubMedCrossRefGoogle Scholar
  30. Kinnamon S.C. en R.F. Margolskee. Mechanisms of taste transduction. Curr. Opin. Neurobiol. 6, (1996)506–513.PubMedCrossRefGoogle Scholar
  31. Klok M.D., S. Jakobsdottir en M.L. Drent. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity Rev. 8, (2006)21–34.CrossRefGoogle Scholar
  32. Laing D.G., C. Link, A.L. Jinks en I. Hutchinson. The limited capacity of humans to identify the components of taste mixtures and taste-odour mixtures. Perception 31, (2002)617–635.PubMedCrossRefGoogle Scholar
  33. Lee V.M. en R.W.A. Linden. The effect of odours on stimulated parotid salivary flow in humans. Physiol. Behavior 52, (1992)1121–1125.CrossRefGoogle Scholar
  34. Leinonen J., S. Parkkila, K. Kannisto, P. Koivunen en H. Rajaniemi. Secretion of carbonic anhydrase isoenzyme VI (CA VI) from human and rat lingual serous von Ebner’s gland. J. Histochem. Cytochem. 49, (2001)657–662.PubMedCrossRefGoogle Scholar
  35. Lindemann B. Tasting the sweet and the bitter. Current Biol. 6, (1996)1234–1237.CrossRefGoogle Scholar
  36. Lindemann B. Taste reception. Psychol. Rev. 76, (1996)719–766.Google Scholar
  37. MacLaughlin S. en R.F. Margolskee. The sense of taste. Am. Scient. 82, (1994)538–545.Google Scholar
  38. Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit. Rev. Oral Biol. Med. 11, (2000)216–229.PubMedCrossRefGoogle Scholar
  39. Mantani N., K. Ito, T. Kogure, A. Hoshino, E. Kawada, H. Sakamoto, e.a. A decade-long sourtaste sensation successfully treated with a protonpump inhibitor. J. Oral Rehabil. 32, (2005)776–778.PubMedCrossRefGoogle Scholar
  40. Maruyama Y., E. Pereira, R.F. Margolskee, N. Chaudhari en S.D. Roper. Umami responses in mouse taste cells indicate more than one receptor. J. Neurosci. 26, (2006)2227–2234.PubMedCentralPubMedCrossRefGoogle Scholar
  41. De Matteis R., R. Puxeddu, A. Riva en S. Cinti. Intralobular ducts of human major salivary glands contain leptin and its receptor. J. Anat. 201, (2002)363–370.PubMedCentralPubMedCrossRefGoogle Scholar
  42. McLaughlin S. en R.F. Margolskee. The sense of taste. Am. Scientist 82, (1994)538–545.Google Scholar
  43. Michels L.F.E. Smaakstoornissen. In: Handboek Tandheelkundige Praktijk, 1981, pp B7 6–1,6–9.Google Scholar
  44. Miller I.J. Variation in human taste bud density as a function of age. Ann. N.Y. Acad. Sci. 561, (1989)307–319PubMedCrossRefGoogle Scholar
  45. Montmayeur J-P. en H. Matsunami. Receptors for bitter and sweet taste. Curr. Opinion Neurobiol. 12, (2002)1–6.CrossRefGoogle Scholar
  46. Mott A.E. en D.A. Leopold. Disorders in taste and smell. Med. Clinics North Am. 75, (1991)1321–1353.Google Scholar
  47. Neyraud E., T. Sayd, M. Morzel en E. Dransfield. Proteomic analysis of human whole and parotid salivas following stimulation by different tastes. J. Proteome Res. 5, (2006)2474–2480.PubMedCrossRefGoogle Scholar
  48. Nieuw Amerongen A. van. Speeksel en smaakgewaarwording van de oudere mens. Ned. Tijdschr. Tandh. 96, (1989)193–195.Google Scholar
  49. Ninomiya K. An overview of recent research on MSG: sensory applications and safety. Food Austr. 53, (2001)546–549.Google Scholar
  50. Ninomiya K. Umami: a universal taste. Food Rev. Int. 18, (2002)23–28.CrossRefGoogle Scholar
  51. Ninomiya Y., N. Shigemura, K. Yasumatsu, R. Ohta, K. Sugimoto, K. Nakashima, e.a. Leptin and sweet taste. Vitamins and Hormones 64, (2002)221–248.PubMedCrossRefGoogle Scholar
  52. Oe P.-L., J. van der Meulen, C.P. de Vries, L. Gooren, R.D. Vis en J. van der Meer. The clinical relevance of tracé elements deficiencies in patients on hemodialysis. Progr. Artific. Organs 1983, 481–486.Google Scholar
  53. Oord A.H.A. van den en P.D. van Wassenaar. Umami peptides: assessment of their alleged taste properties. Z. Lebensm. Unters. Forsch. A 205, (1997)125–130.CrossRefGoogle Scholar
  54. Osaki T., M. Ohshima, Y. Tomita, N. Matsugi and Y. Nomura. Clinical and physiological investigations in patients with taste abnormality. J. Oral Pathol. Med. 25, (1996)38–43.PubMedCrossRefGoogle Scholar
  55. Prescott J. Taste hedonics and the role of umami. Food Austr. 53, (2001)550–554.Google Scholar
  56. Randeva H.S., E. Karteris, K.C. Lewandowski, S. Sailesh, P. O’Hare en E.W. Hillhouse. Circadian rhythmicity of salivary leptin in healthy subjects. Mol. Genet. Metab. 78, (2003)229–235.PubMedCrossRefGoogle Scholar
  57. Ritchie C.S. Oral health, taste, and olfaction. Clin. Geriatr. Med. 18, (2002)709–717.PubMedCrossRefGoogle Scholar
  58. Russell S.J.K. en P.A.S. Breslin. An overview of binary taste-taste interactions. Food Qual. Pref. 14, (2002)111–124.Google Scholar
  59. Sato M. Sweet taste receptor mechanisms. Jap. J. Physiol. 35, (1985)875–885.CrossRefGoogle Scholar
  60. Slootstra J.W., P. de Geus, H. Haas, C.T. Verrips en R.H. Meloen. Possible active site of the sweet-tasting protein thaumatin. Chem. Senses 20, (1995)535–543.PubMedCrossRefGoogle Scholar
  61. Spielman A.I., T. Huque, H. Nagal, G. Whitney en J.G. Brand. Generation of inositol phosphates in bitter taste transduction. Physiol. Behav. 56, (1994)1149–1155.PubMedCrossRefGoogle Scholar
  62. Stevens J.C., L.A. Cruz, J.M. Hoffman en M.Q. Patterson. Taste sensitivity and aging: high incidence of decline revealed by repeated threshold measures. Chem. Senses 20, (1995)451–459.PubMedCrossRefGoogle Scholar
  63. Stevenson R.J., J. Prescott en R.A. Boakes. Confusing tastes and smells: How odours can influence the perception of sweet and sour tastes. Chem Senses 24, (1999)627–635.PubMedCrossRefGoogle Scholar
  64. Stewart-Knox B.J., E.E.A. Simpson, H. Parr, G. Rae, A. Polito, F. Intorre, e.a. Zinc status and taste acuity in older Europeans: the ZENITH study. Eur. J. Clin. Nutrit. 59, (2005)S31–S-36.CrossRefGoogle Scholar
  65. Stewart-Knox B.J., E.E.A.Simpson, H. Parr, G. Rae, A. Polito, F. Intorre, e.a. Taste acuity in response to zinc supplementation in older European. Br. J. Nutr. 99, (2008)129–136.PubMedCrossRefGoogle Scholar
  66. Talavera K., Y. Ninomiya, C. Winkel, T. Voets en B. Nilius. Influence of temperature on taste perception. Cell. Mol. Life Sci. 64, (2007)377–381.PubMedCrossRefGoogle Scholar
  67. Temussi P.A. Natural sweet macromolecules: how sweet proteins work. Cell. Mol. Life Sci. 63, (2006)1876–1888.PubMedCrossRefGoogle Scholar
  68. Thatcher B.J., A.E. Doherty, E. Orvisky, B.M. Martin en R.I. Henkin. Gustin from human parotid saliva is carbonic anhydrase VI. Biochem. Biophys. Res. Commun. 250, (1998)635–641.PubMedCrossRefGoogle Scholar
  69. Vissink A., A. van Nieuw Amerongen en E.Th.H.G.J. Oremus. De invloed van geneesmiddelen op het orofaciale gebied. Ned. Tijdschr. Tandheelkd. 106, (1999)254–263.PubMedGoogle Scholar
  70. Vissink A., R. van Weissenbruch en A. van Nieuw Amerongen. Smaak- en reukstoornissen. Ned. Tijdschr. Tandheelkd. 108, (2001)229–236.PubMedGoogle Scholar
  71. Walters D.E. How are bitter and sweet tastes related? Tr Food Sci. Technol. 7, (1996)399–403.CrossRefGoogle Scholar
  72. Weiffenbach J.M., P.C. Fox en B.J. Baum. Taste and salivary function. Proc. Natl. Acad. Sci. 83, (1986)6103–6106.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Willigen J.D. van. Smaak. In: J.D. van Willigen e.a. (eds). Morfologie en functie van het orofaciale systeem. Bohn, Scheltema en Holkema, Utrecht, 1983(148–154).Google Scholar
  74. Woods R.K. MSG and asthma – what is the evidence? Food Austr. 53, (2001)555–559.Google Scholar
  75. Yamamoto T., T. Nagai, T. Shimura en Y. Yasoshima. Roles of chemical mediators in the taste system. Jap. J. Pharmacol. 76, (1998)325–348.PubMedCrossRefGoogle Scholar
  76. Zhang Y.F., M.A. Hoon, J. Chandrashekar, K.L. Mueller, B. Cook, D.Q. Wu, e.a. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 112, (2003)293–301.PubMedCrossRefGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Uitgeverij 2008

Authors and Affiliations

  1. 1.Sectie Orale BiochemieAcademisch Centrum Tandheelkunde Amsterdam (ACTA), Vrije Universiteit en Universiteit van AmsterdamAmsterdam

Personalised recommendations