Advertisement

10 Interactie van micro-organismen met speeksel(glyco)proteïnen: aggregatie - hechting - groei

Chapter
  • 812 Downloads

Samenvatting

  • De aanwezigheid van een speekselpellicle op de gebitselementen heeft positieve kanten:

    • de pellicle biedt bescherming tegen voortijdige slijtage door kauwkrachten en tegen tandenknarsen;

    • de pellicle biedt bescherming tegen zuurinwerking vanuit voedsel, drank en het bacteriemetabolisme.

  • De aanwezigheid van een speekselpellicle op gebitselementen heeft ook een keerzijde: de pellicle bevordert selectief de plaquevorming, waardoor bij slechte mondhygiëne demineralisatie kan optreden door uitscheiding van stofwisselingsproducten van de plaquebacteriën, zoals melkzuur.

  • Om de negatieve bijdrage van de speekselpellicle op de tandoppervlakken te minimaliseren, moet de aanhechting van micro-organismen worden voorkomen of vertraagd. Goed poetsen verwijdert wel de plaquebacteriën, maar niet de pellicle. Daarnaast remt het gebruik van fluoridetandpasta de plaquevorming, net als stimulering van de PAR-secretie door te kauwen op gebitsveilige kauwgom.

  • Aan mondspoeldranken kunnen natuurlijke fosfaatverbindingen worden toegevoegd, zoals fytaat en fosvitine, die plaquevorming remmen. De dosering van fytaat mag niet te hoog zijn, omdat een overmaat aan fytaat juist calcium kan onttrekken aan gebitselementen. Ook aminfluoride heeft een remmend effect op de plaqueontwikkeling, net als de synthetische polypeptiden polyasparaginezuur en polyglutaminezuur.

Literatuur

  1. Amano A., S. Shizukuishi, H. Horie, S. Kimura, I. Morisaki en S. Hamada. Binding of Porphyromonas gingivalis fimbriae to proline-rich glycoproteins in parotid saliva via a domain shared by major salivary components. Infect. Immun. 66, (1998)2072–2077.PubMedCentralPubMedGoogle Scholar
  2. Arends J., J. Schuthof en J. Christoffersen. Inhibition of enamel demineralization by albumin in vitro. Caries Res. 20, (1981)337–340.CrossRefGoogle Scholar
  3. Bennick A. Salivary proline-rich proteins. Mol. Cell. Biochem. 45, (1982)83–99.PubMedCrossRefGoogle Scholar
  4. Bikker F.J., A.J.M. Ligtenberg, K. Nazmi, E.C.I. Veerman, W. van ’t Hof, J.G.M. Bolscher, e.a. Identification of the bacteria-binding domain on salivary agglutinin (gp-340/DMBT1), a member of the scavenger receptor cysteine-rich superfamily. J. Biol. Chem. 277, (2002) 32109–32115.PubMedCrossRefGoogle Scholar
  5. Bosch J.A., E.J.C. de Geus, T.J.M. Ligtenberg, K. Nazmi, E.C.I. Veerman, J. Hoogstraten, e.a. Salivary MUC5B-mediated adherence (ex vivo) of Helicobacter pylori during acute stress. Psychosom. Med. 62, (2000) 40–49.PubMedCrossRefGoogle Scholar
  6. Cardenas M., U. Elofsson en L. Lindh. Salivary mucin MUC5B could be an important component of in vitro pellicles of human saliva: an in situ ellipsometry and atomic force microscopy study. Biomacromol. 8, (2007)1149–1156.CrossRefGoogle Scholar
  7. Carlen A., P. Bratt, C. Stenudd, J. Olsson en N. Strömberg. Agglutinin and acidic proline-rich protein receptor patterns may modulate bacterial adherence and colonization on tooth surfaces. J. Dent. Res. 77, (1998)81–90.PubMedCrossRefGoogle Scholar
  8. Carlen A. en J. Olsson. Monoclonal antibodies against a high-molecular weight agglutinin block adherence to experimental pellicles on hydroxyapatite and aggregation of Streptococcus mutans. J. Dent. Res. 74, (1995)1040–1047.PubMedCrossRefGoogle Scholar
  9. Cid H., V. Vargas, M. Bunster en S. Bustos. FEBS Letters 198, (1986)140–144.Google Scholar
  10. Contucci A.M., R. Inzitari, S. Agostino, A. Fiorita, T. Cabras, E. Scarano, e.a. Statherin levels in saliva of patients with precancerous and cancerous lesions of the oral cavity: a preliminary report. Oral Dis. 11, (2005)95–99.PubMedCrossRefGoogle Scholar
  11. Cowan M.M., K.G. Taylor en R.J. Doyle. Kinetic analysis of S. sanguis adhesion to artificial pellicle. J. Dent. Res. 65, (1986)1278–1283.PubMedCrossRefGoogle Scholar
  12. Deimling D., L. Breschi, W. Hoth-Hannig, A. Ruggeri, C. Hannig, Y. Nekrashevych, e.a. Electron microscopic detection of salivary α-amylase in the pellicle formed in situ. Eur. J. Oral Sci. 112, (2004)503–509.PubMedCrossRefGoogle Scholar
  13. Dickinson M.E. en A.B. Mann. Nanomechanics and morphology of salivary pellicle. J. Mater. Res. 21, (2006)1996–2002).CrossRefGoogle Scholar
  14. Egge K.H. en G. Rölla. Further studies on the composition of the acquired enamel pellicle. Scand. J. Dent. Res. 91, (1983)439–446.Google Scholar
  15. Elangovan S., H.C. Margolis, F.G. Oppenheim en E. Beniash. Conformational changes in salivary proline- rich protein 1 upon adsorption to calcium phosphate crystals. Langmuir 23, (2007)11200–11205.PubMedCrossRefGoogle Scholar
  16. Embery G., T.G. Heany en J.B. Stanbury. Studies on the organic polyanionic constituents of human acquired dental pellicle. Archs Oral Biol. 31, (1986)623–625.CrossRefGoogle Scholar
  17. Fives-Taylor P.M. en D.W. Thompson. Surface properties of Streptococcus sanguis FW213 mutants nonadherent to saliva-coated hydroxyapatite. Infect Immun. 47, (1985)752–759.PubMedCentralPubMedGoogle Scholar
  18. Groenink J., A.J.M. Ligtenberg, E.C.I. Veerman, J.G.M. Bolscher en A. van Nieuw Amerongen. Interaction of the salivary low-molecular-weight mucin (MG2) with Actinobacillus actinomycetemcomitans. Ant. Leeuwenh. 70, (1996) 79–87.CrossRefGoogle Scholar
  19. Groenink J., E. Walgreen-Weterings, K. Nazmi, J.G.M. Bolscher, E.C.I. Veerman, A.J. van Winkelhoff, e.a. Salivary lactoferrin and low-Mr mucin MG2 in Actinobacillus actinomycetemcomitans-associated periodontitis. J. Clin. Periodontol. 26, (1999) 269–275.PubMedCrossRefGoogle Scholar
  20. Guan Y.H., D.L. Lath, T. de Graaf, T.H. Lilley en A.H. Brook. Moderation of oral bacterial adhesion on saliva-coated hydroxyapatite by polyaspartate. J. Appl. Microbiol. 94, (2003)456–461.PubMedCrossRefGoogle Scholar
  21. Hannig C., J. Hoch, K. Becker, M. Hannig en T. Attin. Lysozyme activity in the initially formed in situ pellicle. Archs Oral Biol. 50, (2005a)821–828.CrossRefGoogle Scholar
  22. Hannig C., M. Hannig en T. Attin. Enzymes in the acquired pellicle. Eur. J. Oral Sci. 113, (2005b)2–13.PubMedCrossRefGoogle Scholar
  23. Hannig C., K. Huber, I. Lambrichts, J. Gräser, J. D’Haen en M. Hannig. Detection of salivary aamylase and lysozyme exposed on the pellicle formed in situ on different materials. J. Biomed. Mat. Res. 83A, (2007)98–103.CrossRefGoogle Scholar
  24. Hannig M., M. Fiebiger, M. Güntzer, A. Döbert, R. Zimehl en Y. Nekrashevych. Protective effect of the in situ formed short-term salivary pellicle. Archs Oral Biol. 49, (2004)903–910.CrossRefGoogle Scholar
  25. Hoeven J.S. van der en M.H. de Jong. De Microbiologie van de Mond. NIB, Zeist, 1986.Google Scholar
  26. Hoeven J.S. van der, M.H. de Jong en A. van Nieuw Amerongen. Growth of oral microflora on saliva from different glands. Microb. Ecol. Hlth Dis. 2, (1989)171–180.CrossRefGoogle Scholar
  27. Joiner A., D. Muller, U.M. Elofsson, M. Malmsten en T. Arnebrant. Adsorption from blackt tea and red wine onto in vitro salivary pellicles studied by ellipsometry. Eur. J. Oral Sci. 111, (2003)417–422.PubMedCrossRefGoogle Scholar
  28. Joiner A., A. Schwarz, C.J. Philpotts, T.F. Cox, K. Huber en M. Hannig. The protective nature of pellicle towards toothpaste abrasion on enamel and dentine. J. Dent. 36, (2008)360–368.PubMedCrossRefGoogle Scholar
  29. Johansson I., P. Bratt, D.I. Hay, S. Schluckebier en N. Strömberg. Adhesion of Candida albicans, but not Candida krusei, to salivary statherin and mimicking host molecules. Oral Microbiol. Immunol. 15, (2000)112–118.PubMedCrossRefGoogle Scholar
  30. Kataoka K., A. Amano, M. Kuboniwa, H. Horie, H. Nagata en S. Shizukuishi. Active sites of salivary proline-rich protein for binding to Porphyromonas gingivalis fimbriae. Infect. Immun. 65, (1997)3159–3164.PubMedCentralPubMedGoogle Scholar
  31. Kauffman D., T. Hofmann, A. Bennick en P. Keller. Basic proline-rich Proteins from human parotid saliva: complete covalent structures of proteins IB-1 and IB-6. Biochemistry 1986, 25, 2387–2392.PubMedCrossRefGoogle Scholar
  32. Kolenbrander P.E. en J. London. Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol. 1993 June; 175(11): 3247–3252.Google Scholar
  33. Koop H.M., M. Valentijn-Benz, A. van Nieuw Amerongen, P.A. Roukema en J. de Graaff. Involvement of human mucous saliva and salivary mucins in the aggregation of the oral bacteria Streptococcus sanguis, Streptococcus oralis, and Streptococcus rattus. Ant. Leeuwenh. 57, (1990)245–252.CrossRefGoogle Scholar
  34. Koop H.M. Saliva-induced aggregation of oral bacteria; involvement of human salivary mucins. Dissertatie. Vrije Universiteit, Amsterdam, 1989.Google Scholar
  35. Krasse B. Adherence of bacteria to tooth surfaces. Swed. Dent. J. 1, (1977)253–259.PubMedGoogle Scholar
  36. Lamkin M.S., D. Migliari, Y.Yao, R.F. Troxler en F.G. Oppenheim. New in vitro model for the acquired enamel pellicle: pellicles formed from whole saliva show inter-subject consistency in protein composition and proteolytic fragmentation patterns. J. Dent. Res. 80, (2001)385–388.PubMedCrossRefGoogle Scholar
  37. Larsen M.J. en E.I.F. Pearce. Saturation of human saliva with respect to calciumsalts. Archs Oral Biol. 48, (2003)317–322.CrossRefGoogle Scholar
  38. Lee J.-Y., J.-W. Chung, Y.-K. Kim, S.-C. Chung en H.-S. Kho. Comparison of the composition of oral mucosal residual saliva with whole saliva. Oral Dis. 13, (2007)550–554.PubMedCrossRefGoogle Scholar
  39. Lee S.F. en T.L. Boran. Roles of sortase in surface expression of the major protein adhesin P1, salivainduced aggregation and adherence, and cariogenicity of Streptococcus mutans. Infect. Immun. 71, (2003)676–681.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Levine M.J., L.A. Tabak, M. Reddy en I.D. Mandel. Nature of salivary pellicles in microbial adherence: role of salivary mucins. In: S.E. Mergenhagen en B. Rosan (eds.). Molecular Basis of Oral Microbial Adhesion. Am. Soc. Microbiol., 1985,125–130.Google Scholar
  41. Li J., E.J. Helmerhorst, R.B. Corley, L.E. Luus, R.F. Troxler en F.G. Oppenheim. Characterization of the immunologic responses to human in vivo acquired pellicle as a novel means to investigate its composition. Oral Microbiol. Immunol. 18, (2003)183–191.PubMedCrossRefGoogle Scholar
  42. Li J., E.J. Helmerhorst, C.W. Leone, R.F. Troxler, T. Yaskell, A.D. Haffajee, e.a. Identification of early microbial colonizers in human dental biofilm. J. Appl. Microbiol. 97, (2004a)1311–1318.PubMedCrossRefGoogle Scholar
  43. Li J., E.J. Helmerhorst, Y. Yao, M.E. Nunn, R.F. Troxler en F.G. Oppenheim. Statherin is an in ivo pellicle constituent: identification and immunoquantification. Archs Oral Biol. 49, (2004)379–385.CrossRefGoogle Scholar
  44. Lie T. Early dental plaque morphogenesis. A scanning electron microscope study using the hydroxyapatite splint model and a low-sucrose diet. J. Periodont. Res. 12, (1977) 73–89.PubMedCrossRefGoogle Scholar
  45. Ligtenberg A.J.M., P.J.M. Camp, J.S. van der Hoeven, E.C.I. Veerman en A. van Nieuw Amerongen. Aggregation of oral streptococci selected by growth on human saliva from different glands. Microb. Ecol. Hlth Dis. 4, (1991) 29–37.CrossRefGoogle Scholar
  46. Ligtenberg A.J.M., E. Walgreen-Weterings, E.C.I. Veerman, J. de Graaff en A. van Nieuw Amerongen. Adherence of Streptococcus gordonii HG 222 in the presence of saliva. Ant. Leeuwenh. 64, (1993) 39–45.CrossRefGoogle Scholar
  47. Ligtenberg A.J.M., E. Walgreen-Weterings, E.C.I. Veerman, J.J. de Soet en A. van Nieuw Amerongen. Attachment of Streptococcus gordonii HG 222 to Streptococcus oralis Ny 586 and the influence of saliva. Microb. Ecol. Hlth Dis. 8, (1995) 243–254.CrossRefGoogle Scholar
  48. Ligtenberg A.J.M., E.C.I. Veerman en A. van Nieuw Amerongen. A role for Lewis a antigens on salivary agglutinin in binding to Streptococcus mutans. Ant. Leeuwenh. 77, (2000) 21–30.CrossRefGoogle Scholar
  49. Liljemark W.F., C.G. Bloomquist en G.R. Germaine. Effect of bacterial aggregation on the adherence of oral streptococci to hydroxyapatite. Infect. Immun. 31, (1981)935–941.PubMedCentralPubMedGoogle Scholar
  50. Loomis R.E., C.-C. Tseng en M.J. Levine. N.m.r. analyses of the histidine microenvironment in a human salivary proline-rich glycoprotein. Int. J. Peptide Protein Res. 32, (1988)123–129.CrossRefGoogle Scholar
  51. Loomis R.E., M. Gonzalez en P.M. Loomis. Investigation of cis/trans proline isomerism in a multiply occurring peptide fragment from human salivary proline-rich glycoprotein. Int. J. Peptide Protein Res. 38, (1991)428–439.CrossRefGoogle Scholar
  52. MacPherson L.M., T.W. MacFarlane, D.A. Weetman en K.W. Stephen. Comparison of the plaque microflora from natural and appliance-borne enamel surfaces. 25, (1991)58–64.Google Scholar
  53. Matsui N. Electron Microscopic studies on oral microbial interactions in plaque formation in vitro associated with Streptococcus mutans. J. Electron Microscopy 33, (1984)131–141.Google Scholar
  54. Mollenauer J., M. Deichmann, B. Helmke, H. Muller, G. Kollender, U. Holmskov, e.a. Frequent downregulation of DMBT1 and galectin-3 in epithelial skin cancer. Int. J. Cancer 105, (2003)149–157.CrossRefGoogle Scholar
  55. Nekrashevych Y. en L. Stösser. Protective influence of experimentally formed salivary pellicle on enamel erosion. Caries Res. 37, (2003)225–231.PubMedCrossRefGoogle Scholar
  56. Nieuw Amerongen A. van. Speeksel en plaquevorming. Ned. Tijdschr. Tandheelkd. 98, (1991)92–93.PubMedGoogle Scholar
  57. Nieuw Amerongen A. van, C.H. Oderkerk en A.A. Driessen. Role of mucins from human whole saliva in the protection of tooth enamel against demineralization in vitro. Caries Res. 21, (1987)297–309.PubMedCrossRefGoogle Scholar
  58. O’Sullivan J.M., R.D. Cannon, P.A. Sullivan en H.F. Jenkinson. Identification of salivary basic prolinerich proteins as receptors for Candida albicans adhesion. Microbiology 143, (1997)341–348.PubMedCrossRefGoogle Scholar
  59. O’Sullivan J.M., H.F. Jenkins en R.D. Cannon. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology 146, (2000)41–48.PubMedGoogle Scholar
  60. Peros W.J. en R.J. Gibbons. Evidence suggesting multiple binding sites in experimental pellicles for S. mutans JBP. J. Dent. Res. 65, (1986)1332–1334.PubMedCrossRefGoogle Scholar
  61. Proctor G.B., R. Pramanik, G.H. Carpenter en G.D. Rees. Salivary proteins interact with dietary constituents to modulate tooth staining. J. Dent. Res. 84, (2005)73–78.PubMedCrossRefGoogle Scholar
  62. Rathman W.M., Minor proteins from human mucous salivary glands. A biochemical and immunological approach. Dissertatie, Vrije Universiteit, Amsterdam, 1990.Google Scholar
  63. Reddy M.S., M.J. Levine MJ en L.A. Tabak. Structure of the carbohydrate chains of the proline-rich glycoprotein from human parotid saliva. Biochem. Biophys. Res. Commun. 104, (1982)882–888.Google Scholar
  64. Robinovitch M.R., R.L. Ashley, J.M. Iversen, E.M. Vigoren, F.G. Oppenheim en M. Lamkin. Parotid salivary basic proline-rich proteins unhibit HIV-1 infectivity. Oral Dis. 7, (2001)86–93.PubMedGoogle Scholar
  65. Rölla G., S. Danu Hsu enW.H. Bowen. The influence of fluoride on the uptake of protein by hydroxyapatite. Caries Res. 11, (1977)308–312.PubMedCrossRefGoogle Scholar
  66. Rudney J.D., Y. Pan en R. Chen. Streptococcal diversity in oral biofilms with respect to salivary function. Archs Oral Biol. 48, (2003)475–493.CrossRefGoogle Scholar
  67. Santos O., J. Kosoric, M.P. Hector, P. Anderson en L. Lindh. Adsorption behavior of statherin and a statherin peptide onto hydroxyapatite and silica surfaces by in situ ellipsometry. J. Coll. Interf. Sci. 318, (2008)175–182.CrossRefGoogle Scholar
  68. Schenkels L.C.P.M. EP-GP, a glycoprotein from the human submandibular glands. Biochemical characterization and its binding to oral bacteria. Dissertatie, Vrije Universiteit, Amsterdam, 1994.Google Scholar
  69. Sekine S., K. Kataoka, M. Tanaka, H. Nagata, T. Kawakami, K. Akaji, e.a. Active domains of salivary statherin on apatitic surfaces for binding to Fusobacterium nucleatum cells. Microbiology 150, (2004)2373–2379.PubMedCrossRefGoogle Scholar
  70. Shellis R.P., M. Addy en G.D. Rees. In vitro studies on the effect of sodium tripolyphosphate on the interactions of stain and salivary protein with hydroxyapatite. J. Dent. 33, (2005)313–324.PubMedCrossRefGoogle Scholar
  71. Shimada T. Salivary proteins as a defense against dietary tannins. J. Chem. Ecol. 32, (2006)1149–1163.PubMedCrossRefGoogle Scholar
  72. Shimotoyodome A., H. Kobayashi, I. Tokimitsu en T. Matsukubo. Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces. Caries Res. 40, (2006)403–411.PubMedCrossRefGoogle Scholar
  73. Simon C., K. Barathieu, M. Laguerre, J.-M. Schmitter, E. Fouquet, I. Pianet, e.a. Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach. Biochemistry 42, (2003)10385–10395.PubMedCrossRefGoogle Scholar
  74. Slomiany B.L., V.L.N. Murthy, E. Zdebska, A. Slomiany, K. Gwozdzinski en I.D. Mandel. Tooth surface-pellicle lipids and their role in the protection of dental enamel against lactic-acid diffusion in man. Archs Oral Biol. 31, (1986)187–191.CrossRefGoogle Scholar
  75. Solis R.L., M.P. Diaz, I.M. Bozo, U.K. Weis en F. Diaz. Early detection in saliva of polypeptides associated to isoproterenol-induced mouse parotid hypertrophy. Biochim. Biophys. Acta 1621, (2003)41–47.CrossRefGoogle Scholar
  76. Soukka T., V. Roger, E. Söderling en J. Tenovuo. Binding of Streptococcus mutans, serotype c, to saliva coated hydroxyapatite in the presence and absence of human lactoferrin. Microb. Ecol. Hlth. Dis. 7, (1994)139–144.CrossRefGoogle Scholar
  77. Tabak L.A. en W.H. Bowen. Roles of saliva (pellicle), diet, and nutrition on plaque formation. J. Dent. Res. 68, (1989)1560–1566.Google Scholar
  78. Tamaki N., T. Tada, M. Morita en T. Watanabe. Comparison of inhibitory activity on calcium phosphate precipitation by acidic proline-rich proteins, statherin and histatin-1. Calcif. Tissue Int. 71, (2002)59–62.PubMedCrossRefGoogle Scholar
  79. Tanner J., A. Carlen, E. Söderling en P.K. Valittu. Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans 25175 to dental fiber-reinforced composites. J. Biomed. Mat. Res. 66B, (2003)391–398.CrossRefGoogle Scholar
  80. Uehara Y., K. Agematsu, K. Kikuchi, S. Matsuzaki, S. Imai, M. Takamoto, e.a. Secretory IgA, salivary peroxidase, and catalase-mediated microbicidal activity during hydrogen peroxide catabolism in viridans streptococci: pathogen coaggregation. J. Infect. Dis. 194, (2006)98–107.PubMedCrossRefGoogle Scholar
  81. Variyam E.P. en L.C. Hoskins. Mucin degradation in human colon ecosystems. Degradation of hog gastric mucin by fecal extracts and fecal cultures. Gastroenterology 81, (1981)751–758.PubMedGoogle Scholar
  82. Veerman E.C.I., C.M.C. Bank, F. Namavar, B.J. Appelmelk, J.G.M. Bolscher en A. van Nieuw Amerongen. Sulfated glycans on oral mucin as receptors for Helicobacter pylori. Glycobiology 7, (1997) 737–743.PubMedCrossRefGoogle Scholar
  83. Veerman E.C.I., A.J.M.Ligtenberg, L.C.P.M. Schenkels, E. Walgreen-Weterings en A. van Nieuw Amerongen. Binding of human high-molecular weight salivary mucins (MG1) to Hemophilus parainfluenzae. J. Dent. Res. 74, (1995) 351–357.PubMedCrossRefGoogle Scholar
  84. Vidal S., L. Francis, A. Noble, M. Kwiatkowski, V. Cheynier en E. Waters. Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal. Chim. Acta 513, (2004)57–65.CrossRefGoogle Scholar
  85. Vitorino R., S.D.M. Guedes, R. Ferreira, M.J.C. Lobo, J. Duarte, A.J. Ferrer-Correia, e.a. Two-dimensional electrophoresis study of in vitro pellicle formation and dental caries susceptibility. Eur. J. Oral Sci. 114, (2006)147–153.PubMedCrossRefGoogle Scholar
  86. Vitorino R., M.J. Calheiros-Lobo, J. Williams, A.J. Ferrer-Correia, K.B. Tomer, J.A. Duarte, e.a. Peptidomic analysis of human acquired enamel pellicle. Biomed. Chromatogr. 21, (2007)1107–1117.PubMedCrossRefGoogle Scholar
  87. Vitorino R., M.J. Calheiros-Lobo, J.A. Duarte, P.M. Domingues en F.M.L. Amado. Peptide profile of human acquired enamel pellicle using MALDI tandem MS. J. Sep. Sci. 31, (2008)523–537.PubMedCrossRefGoogle Scholar
  88. Wickström C. en G. Svensäter. Salivary gel-forming mucin MUC5B – a nutrient for dental plaque bacteria. Oral Microbiol. Immunol. 23, (2008)177–182.PubMedCrossRefGoogle Scholar
  89. Yao Y., M.S. Lamkin en F.G. Oppenheim. Pellicle precursor protein crosslinking: characterization of an adduct between acidic proline-rich protein (PRP-1) and statherin generated by transglutaminase. J. Dent. Res. 79, (2000)930–938.PubMedCrossRefGoogle Scholar
  90. Yao Y., J. Grogan, M. Zehnder, U. Lendenmann, B. Nam, Z. Wu, e.a. Compositional analysis of human acquired enamel pellicle by mass spectrometry. Archs Oral Biol. 46,(2001)293–303.CrossRefGoogle Scholar
  91. Yao Y. E.A. Berg, C.E. Costello, R.F. Troxler en F.G. Oppenheim. Identification of protein components in human acquired enamel pellicle and whole sali va using novel proteomics approaches. J. Biol. Chem. 278, (2003)5300–5308.Google Scholar
  92. Yin A., H.C. Margolis, Y. Yao, J. Grogan en F.G. Oppenheim. Multi-component adsorption model for pellicle formation: The influence of salivary proteins and non-salivary phosphoproteins on the binding of histatin 5 onto hydroxyapatite. Archs Oral Biol. 51, (2006)102–110.CrossRefGoogle Scholar
  93. Zahradnik R.T., D. Propas en E.C. Moreno. In vitro demineralization by Streptococcus mutans in the presence of salivary pellicles. J. Dent. Res. 56, (1977)1107–1110.PubMedCrossRefGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Uitgeverij 2008

Authors and Affiliations

  1. 1.Sectie Orale BiochemieAcademisch Centrum Tandheelkunde Amsterdam (ACTA), Vrije Universiteit en Universiteit van AmsterdamAmsterdam

Personalised recommendations