Advertisement

Feynman diagrams and their algebraic lattices

  • Michael Borinsky
  • Dirk Kreimer
Part of the CRM Series book series (PSNS, volume 20)

Abstract

We present the lattice structure of Feynman diagram renormalization in physical QFTs from the viewpoint of Dyson-Schwinger-Equations and the core Hopf algebra of Feynman diagrams. The lattice structure encapsules the nestedness of diagrams. This structure can be used to give explicit expressions for the counterterms in zero-dimensional QFTs using the lattice-Moebius function. Different applications for the tadpole-free quotient, in which all appearing elements correspond to semimodular lattices, are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Berghoff, Wonderful compactifications in quantum field theory, Commun. Num. Theor. Phys. 09 (2015), 477–547.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Bloch, “Motives Associated to Graphs”, Takagi Lectures, Kyoto, November, 2006.Google Scholar
  3. [3]
    S. Bloch, H. Esnault and D. Kreimer, On Motives associated to graph polynomials, Commun. Math. Phys. 267 (2006), 181–225.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Bloch and D. Kreimer, Feynman amplitudes and Landau singularities for 1-loop graphs, Commun. Num. Theor. Phys. 4 (2010), 709–753.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Bloch and D. Kreimer, “Cutkosky Rules and Outer Space”, 2015.Google Scholar
  6. [7]
    M. Borinsky, Algebraic lattices in qft renormalization, Letters in Mathematical Physics 106 (2016), 879–911.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [9]
    F. Brown, “Lectures on Renormalization”, Bingen Spring School, 2013.Google Scholar
  8. [10]
    F. Brown and D. Kreimer, Angles, scales and parametric renormalization, Lett. Math. Phys. 103 (2013), 933–1007.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [11]
    A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem i: The Hopf algebra structure of graphs and the main theorem, Communications in Mathematical Physics 210 (2000), 249–273.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [12]
    H. Figueroa and José M Gracia-Bondia, Combinatorial Hopf algebras in quantum field theory i, Reviews in Mathematical Physics, 17(08): 881–976, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [13]
    L. Foissy, Mulitgraded Dyson-Schwinger systems, 2015.Google Scholar
  12. [14]
    J. Kock, Polynomial functors and combinatorial Dyson-Schwinger equations, 2015.Google Scholar
  13. [15]
    D. Kreimer, The core Hopf algebra, Clay Math. Proc. 11 (2010), 313–322.MathSciNetzbMATHGoogle Scholar
  14. [16]
    D. Kreimer, Quantum fields, periods and algebraic geometry, Contemporary Mathematics (2015), 648.Google Scholar
  15. [17]
    D. Kreimer and W. D. Van Suijlekom, Recursive relations in the core Hopf algebra, Nucl. Phys. B 820 (2009), 682–693.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [18]
    O. Krueger and D. Kreimer, Filtrations in Dyson-Schwinger equations: Next-toj-leading log expansions systematically, Annals Phys. 360 (2015), 293–340.CrossRefzbMATHGoogle Scholar
  17. [19]
    D. Manchon, Hopf algebras, from basics to applications to renormalization, arXiv preprint math/0408405, 2004.Google Scholar
  18. [20]
    W. R. Schmitt, Incidence hopf algebras Journal of Pure and Applied Algebra 96(3) (1994), 299–330.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [22]
    G. Van Baalen, D. Kreimer, D. Uminsky and K. Yeats, The QED beta-function from global solutions to Dyson-Schwinger equations, Annals Phys. 324 (2009), 205–219.CrossRefzbMATHGoogle Scholar
  20. [23]
    G. Van Baalen, D. Kreimer, D. Uminsky and K. Yeats, The QCD beta-function from global solutions to Dyson-Schwinger equations, Annals Phys. 325 (2010), 300–324.CrossRefzbMATHGoogle Scholar
  21. [24]
    S. Weinberg, High-energy behavior in quantum field theory, Phys. Rev. 118 (1960), 838–849.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [25]
    K. A. Yeats, “Growth Estimates for Dyson-Schwinger Equations”, PhD thesis, 2008.Google Scholar

Copyright information

© Scuola Normale Superiore Pisa 2017

Authors and Affiliations

  • Michael Borinsky
  • Dirk Kreimer

There are no affiliations available

Personalised recommendations