Skip to main content

Part of the book series: CRM Series ((CRMSNS,volume 18))

Abstract

Several theorems in combinatorial convexity admit colourful versions. This survey describes old and new applications of two methods that can give such colourful results. One is the octahedral construction, the other is Sarkaria’s tensor method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Arocha, I. Bárány, J. Bracho, R. Fabila and L. Montejano, Very colorful theorems, Discrete Comp. Geom. 42 (2009), 142–154.

    Article  MATH  Google Scholar 

  2. I. Bárány, A generalization of Carathéodory’s theorem, Discrete Math. 40 (1982), 141–152.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Bárány, Z. Füredi and L. LOvász, On the number of halving planes, Combinatorica 10 (1990), 175–185.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Bárány and D. G. Larman, A coloured version of Tverberg’s theorem, J. London Math. Soc. 45 (1992), 314–320.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Bárány and Sh. Onn, Colourful linear programming and its relatives, Math. OR 22 (1997), 550–567.

    Article  MATH  Google Scholar 

  6. I. Bárány and J. Matoušek, Quadratic lower bound for the number of colourful simplices, SIAM J. on Discrete Math. 21 (2007), 191–198.

    Article  MATH  Google Scholar 

  7. I. Bárány and R. Karasev, Notes about the Carathéodory number, Discrete Comp. Geom. 48 (2012), 783–792

    Article  MATH  Google Scholar 

  8. A. Björner, L. Lovász, R.T. Živaljević and S.T. Vrećica, Chessboard complexes and matching complexes, J. London Math. Soc. 45 (1944), 25–39.

    Google Scholar 

  9. P. Blagojević, B. Matschke and G. M. Ziegler, Optimal bounds for the colored Tverberg problem, October 2009. (arXiv:math.AT/0910.4987).

    Google Scholar 

  10. A. Deza, S. Huang, T. Stephen and T. Terlaky, Colourful simplicial depth, Discrete Comp. Geom. 35 (2006), 597–615.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Deza, T. Stephen and F. Xie, More colourful simplices, Discrete Comp. Geom. 45 (2011), 272–278.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Deza, F. Meunier and P. Sarrabezolles, A combinatorial approach to colourful simplicial depth, SIAM J. Discrete Math. 28 (2014), 306–322.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929), 238–252.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Holmsen. J. Pach and H. Tverberg, Points surrounding the origin, Combinatorica 28 (2008), 633–634.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Kirchberger, Über Tschebyschefsche Annäherungsmethoden, Math. Ann. 57 (1903), 509–540.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. G. Larman, On sets projectively equivalent to the vertices of a convex polytope, Bull. London Math. Soc. 4 (1972), 6–12

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Matoušek, Note on the colored Tverberg theorem, J. Comb. Theory B 66 (1966), 146–151.

    Article  Google Scholar 

  18. J. W. Milnor, “Topology from the Differentiable Viewpoint”, The University Press of Virginia, Charlottesville, VA, 1965

    MATH  Google Scholar 

  19. W. Mulzer and Y. Stein, Algorithms for tolerated Tverberg partitions (2013) arXiv:1036.5527.

    Google Scholar 

  20. A. Pór, “Diploma thesis”, Eötvös University, Budapest, 1998.

    Google Scholar 

  21. J. Radon, Mengen konvexer Körper, die einen gemensamen Punkt erhalten, Math. Ann. 83 (1921), 113–115.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. L. Ramírez Alfonsín, Lawrence oriented matroids and a problem of McMullen on projective equivalences of polytopes, European J. Comb. 22 (2001), 723–731.

    Article  MATH  Google Scholar 

  23. J-P. Roudneff, Partitions of Points into Simplices with k-dimensional Intersection. Part I: The Conic Tverbergís Theorem, Europ. J. Comb. 22 (2001), 733–743.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Sarrabezolles, The colourful simplicail depth conjecture (2014), arXiv:1402.3412.

    Google Scholar 

  25. K. S. Sarkaria, Tverberg’s theorem via number fields, Israel J. Math. 79 (1992), 317–320.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Soberón, Equal coefficients and tolerance in coloured Tverberg partitions, arXiv:1204.1202

    Google Scholar 

  27. P. Soberón and R. Strausz, A Generalisation of Tverberg’s Theorem, Discrete Comp. Geom. 47 (2012), 455–460.

    Article  MATH  Google Scholar 

  28. T. Stephen and H. Thomas, A quadratic lower bound for colourful simplicial depth, J. Comb. Optimization 16 (2008), 324–327.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Tverberg, A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966), 123–128.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Tverberg, A generalization of Radon’s theorem II, Bull. Austr. Math. Soc. 24 (1981), 321–325.

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Tverberg and S.T. Vrećica, On generalizations of Radon’s theorem and the Ham sandwich theorem, European J. Comb. 14 (1993), 259–264.

    Article  MATH  Google Scholar 

  32. G. M. Ziegler, 3N Colored Points in a Plane, Notices of the AMS. 58 (2011), 550–557.

    MATH  Google Scholar 

  33. R. T. Živaljević and S.T. Vrećica, The colored Tverberg’s problem and complexes of injective functions, J. Comb. Theory A. 61 (1992), 309–318.

    Article  MATH  Google Scholar 

  34. M. Yu. Zvagelskii, An elementary proof of Tverberg’s theorem, J. Math. Sci. (N.Y.) 161 (2009), 384–387.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Bárány, I. (2014). Tensors, colours, octahedra. In: Matoušek, J., Nešetřil, J., Pellegrini, M. (eds) Geometry, Structure and Randomness in Combinatorics. CRM Series, vol 18. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-525-7_1

Download citation

Publish with us

Policies and ethics