Skip to main content

Part of the book series: CRM Series ((CRMSNS,volume 16))

  • 904 Accesses

Abstract

We show that every subcubic triangle-free graph has fractional chromatic number at most 14/5, thus confirming a conjecture of Heckman and Thomas [A new proof of the independence ratio of triangle-free cubic graphs. Discrete Math. 233 (2001), 233–237].

Supported by the Center of Excellence — Inst. for Theor. Comp. Sci., Prague, project P202/12/G061 of Czech Science Foundation.

This author’ work was partially supported by the French Agence Nationale de la Recherche under reference ANR 10 JCJC 0204 01.

This author’ work was supported by a grant of the French Government.

This research was supported by LEA STRUCO and the Czech-French bilateral project MEB 021115 (French reference PHC Barrande 24444XD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Albertson, A lower bound for the independence number of a planar graph, J. Combin. Theory Ser. B 20 (1976), 84–93.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Albertson, B. Bollobás and S. Tucker, The independence ratio and maximum degree of a graph, In: “Proceedings of the Seventh Southeastern Conference on Combinatorics”, Graph Theory, and Computing (1976), Utilitas Math., Congressus Numerantium, No. XVII, 43–50.

    Google Scholar 

  3. K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math. 21 (1977), 429–490.

    MATH  MathSciNet  Google Scholar 

  4. K. Appel, W. Haken and J. Koch, Every planar map is four colorable. II. Reducibility, Illinois J. Math. 21 (1977), 491–567.

    MATH  MathSciNet  Google Scholar 

  5. Z. Dvořák, J.-S. Sereni and J. Volec, Subcubic triangle-free graphs have fractional chromatic number at most 14/5, submitted for publication, arXiv:1301.5296.

    Google Scholar 

  6. S. Fajtlowicz, On the size of independent sets in graphs, Congr. Numer. 21 (1978), 269–274.

    MathSciNet  Google Scholar 

  7. D. Ferguson, T. Kaiser and D. Král’, The fractional chromatic number of triangle-free subcubic graphs, to appear in European Journal of Combinatorics.

    Google Scholar 

  8. H. Grötzsch, Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 8 (1958/1959), 109–120.

    MathSciNet  Google Scholar 

  9. H. Hatami and X. Zhu, The fractional chromatic number of graphs of maximum degree at most three, SIAM J. Discrete Math. 23 (2009), 1162–1175.

    Article  MathSciNet  Google Scholar 

  10. C. C. Heckman and R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001), 233–237.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. C. Heckman and R. Thomas, Independent sets in triangle-free cubic planar graphs, J. Combin. Theory Ser. B 96 (2006), 253–275.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. J. W. Hilton, R. Rado and S. H. Scott, A (< 5)-colour theorem for planar graphs, Bull. London Math. Soc. 5 (1973), 302–306.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. F. Jones, Independence in graphs with maximum degree four, J. Combin. Theory Ser. B 37 (1984), 254–269.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. F. Jones, Size and independence in triangle-free graphs with maximum degree three, J. Graph Theory 14 (1990), 525–535.

    Article  MATH  MathSciNet  Google Scholar 

  15. C.-H. Liu, An upper bound on the fractional chromatic number of triangle-free subcubic graphs, submitted for publication.

    Google Scholar 

  16. L. Lu and X. Peng, The fractional chromatic number of triangle-free graphs with Δ ≤ 3, Discrete Math. 312 (2012), 3502–3516.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Robertson, D. P. Sanders, P. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2–44.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Staton, Some Ramsey-type numbers and the independence ratio, Trans. Amer. Math. Soc. 256 (1979), 353–370.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Steinberg and C. Tovey, Planar Ramsey numbers, J. Combin. Theory Ser. B 59 (1993), 288–296.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jaroslav Nešetřil Marco Pellegrini

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Dvořák, Z., Sereni, JS., Volec, J. (2013). Subcubic triangle-free graphs have fractional chromatic number at most 14/5. In: Nešetřil, J., Pellegrini, M. (eds) The Seventh European Conference on Combinatorics, Graph Theory and Applications. CRM Series, vol 16. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-475-5_79

Download citation

Publish with us

Policies and ethics