Skip to main content

Part of the book series: CRM Series ((CRMSNS,volume 16))

  • 914 Accesses

Abstract

A conjecture of Graham and Häggkvist says that every tree with m edges decomposes the complete bipartite graph K m,m . By establishing some properties of random trees with the use of singularity analysis of generating functions, we prove that asymptotically almost surely a tree with m edges decomposes the complete bipartite graph K 2m,2m .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Drmota, “Random Trees”, Springer-Verlag, 2009.

    Google Scholar 

  2. M. Drmota and B. Gittenberger, The distribution of nodes of given degree in random trees, Journal of Graph Theory 31 (1999), 227–253.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Drmota and B. Gittenberger, The shape of unlabeled rooted random trees, European J. Combin. 31 (2010), 2028–2063

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3 (1990), no. 2, 216–240.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics 5 (2007), # DS6.

    MathSciNet  Google Scholar 

  6. R. L. Häggkvist, Decompositions of complete bipartite graphs, In: “Surveys in Combinatorics”, Johannes Siemons (ed.), Cambridge University Press (1989), 115–146.

    Google Scholar 

  7. A. E. Kézdy, ρ-valuations for some stunted trees, Discrete Math. 306(21) (2006), 2786–2789.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. E. Kézdy and H. S. Snevily, “Distinct Sums Modulo n and Tree Embeddings”, Combinatorics, Probability and Computing, 1, Issue 1, (2002).

    Google Scholar 

  9. A. Lladó and S. C. López, Edge-decompositions of K n,n into isomorphic copies of a given tree, J. Graph Theory 48 (2005), no. 1, 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Lladó, S.C. López and J. Moragas, Every tree is a large subtree of a tree that decomposes K n or Kn,n, Discrete Math. 310 (2010), 838–842

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Otter, The number of trees, Ann. of Math. (2) 49 (1948), 583–599.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Ringel, “Problem 25, Theory of Graphs and its Applications”, Nakl. CSAV, Praha, 1964, 162.

    Google Scholar 

  13. R. W. Robinson and A. J. Schwenk, The distribution of degrees in a large random tree, Discrete Math. 12(4) (1975), 359–372.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Snevily, New families of graphs that have α—labelings, Discrete Math. 170 (1997), 185–194.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. Yuster, Packing and decomposition of graphs with trees, J. Combin. Theory Ser. B 78 (2000), 123–140.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jaroslav Nešetřil Marco Pellegrini

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Drmota, M., Lladó, A. (2013). On a conjecture of Graham and Häggkvist for random trees. In: Nešetřil, J., Pellegrini, M. (eds) The Seventh European Conference on Combinatorics, Graph Theory and Applications. CRM Series, vol 16. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-475-5_70

Download citation

Publish with us

Policies and ethics