Complexity of determining the irregular chromatic index of a graph

Conference paper
Part of the CRM Series book series (PSNS, volume 16)


An edge colouring ϕ of a graph G is locally irregular if each colour class of ϕ induces a graph whose every adjacent vertices have distinct degrees. The least number \( X'_{irr} (G) \) of colours used by a locally irregular edge colouring of G (if any) is referred to as the irregular chromatic index of G.


  1. [1]
    M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory, Ser, B 91(1) (2004), 151–157.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed, Vertex colouring edge partitions, J. Combin. Theory, Ser. B 94(2) (2005), 237–244.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    O. Baudon, J. Bensmail, J. Przybyło and M. Woźniak, On decomposing regular graphs into locally irregular subgraphs, Preprint MD 065,, 2013.

Copyright information

© Scuola Normale Superiore Pisa 2013

Authors and Affiliations

  1. 1.LaBRITalenceFrance

Personalised recommendations