Skip to main content

On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force

  • Conference paper
Geometric Partial Differential Equations proceedings

Part of the book series: CRM Series ((CRMSNS,volume 15))

Abstract

A general anisotropic curvature flow equation with singular interfacial energy and spatially inhomogeneous driving force is considered for a curve given by the graph of a periodic function. We prove that the initial value problem admits a unique global-in-time viscosity solution for a general periodic continuous initial datum. The notion of a viscosity solution used here is the same as proposed by Giga, Giga and Rybka, who established a comparison principle. We construct the global-in-time solution by careful adaptation of Perron’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface, Arch. Rational Mech. Anal. 108 (1989), 323–391.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. W. Barrett, H. Garcke and R. Nürnberg, Numerical computations of faceted pattern formation in snow crystal growth, Phys. Rev. E 86 (2012), 011604.

    Article  Google Scholar 

  3. G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal. 179 (2006), 109–152.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Chambolle and M. Novaga, Existence and uniqueness for planar anisotropic and crystalline curvature flow, Proc. of ‘Variational Methods for Evolving Objects’, (eds. Y. Giga, Y. Tonegawa and P. Rybka), Adv. Stud. Pure Math., to appear.

    Google Scholar 

  5. A. Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound. 6 (2004), 195–218.

    Article  MATH  MathSciNet  Google Scholar 

  6. Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991), 749–786.

    MATH  MathSciNet  Google Scholar 

  7. M. G. Crandall, H. Ismi and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1–67.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. M. Elliott, A. R. Gardiner and R. Schätzle, Crystalline curvature flow of a graph in a variational setting, Adv. Math. Sci. Appl. 8 (1998), 425–460.

    MATH  MathSciNet  Google Scholar 

  9. L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom. 33 (1991), 635–681.

    MATH  MathSciNet  Google Scholar 

  10. T. Fukui and Y. Giga, Motion of a graph by nonsmooth weighted curvature, World Congress of Nonlinear Analysts’ 92, de Gruyter, Berlin, 1996, 47–56.

    Google Scholar 

  11. M.-H. Giga and Y. Giga, A subdifferential interpretation of crystalline motion under nonuniform driving force, Discrete Contin. Dynam. Systems (1998), no. Added Volume I, 276–287.

    Google Scholar 

  12. M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Arch. Rational Mech. Anal. 141 (1998), 117–198.

    Article  MATH  MathSciNet  Google Scholar 

  13. M.-H. Giga and Y. Giga, Stability for evolving graphs by nonlocal weighted curvature, Comm. Partial Differential Equations 24 (1999), 109–184.

    Article  MATH  MathSciNet  Google Scholar 

  14. M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal. 159 (2001), 295–333.

    Article  MATH  MathSciNet  Google Scholar 

  15. M.-H. Giga, Y. Giga and P. Rybka, A comparison principle for singular diffusion equations with spatially inhomogeneous driving force for graphs, Hokkaido University Preprint Series in Mathematics #981 (2011).

    Google Scholar 

  16. Y. Giga, “Surface Evolution Equations: a Level set Approach”, Birkhäuser Verlag, Basel, 2006.

    Google Scholar 

  17. Y. Giga and P. Rybka, Facet bending in the driven crystalline curvature flow in the plane, J. Geom. Anal. 18 (2008), 109–147.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. ISHII, Perron’s method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), 369–384.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. E. Taylor, Constructions and conjectures in crystalline non-differential geometry, In: “Differential Geometry”, Pitman Monogr. Surveys Pure Appl. Math., Vol. 52, Longman Sci. Tech., Harlow, 1991, 321–336.

    Google Scholar 

  20. J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, In: “Differential Geometry: Partial Differential Equations on Manifolds” (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., Vol. 54, Amer. Math. Soc., Providence, RI, 1993, 417–438.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Giga, MH., Giga, Y., Nakayasu, A. (2013). On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force. In: Chambolle, A., Novaga, M., Valdinoci, E. (eds) Geometric Partial Differential Equations proceedings. CRM Series, vol 15. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-473-1_8

Download citation

Publish with us

Policies and ethics