Skip to main content

The Willmore functional

  • Conference paper
Topics in Modern Regularity Theory

Part of the book series: CRM Series ((CRMSNS,volume 13))

Abstract

For an immersed closed surface f: ∑ → ℝn the Willmore functional is defined by

$$W\left( f \right) = \frac{1}{4}\int\limits_\Sigma {{{\left| {\overrightarrow H } \right|}^2}} d{\mu _g}.$$

E. Kuwert and R. Schätzle were supported by the DFG Sonderforschungsbereich TR 71 Freiburg — Tübingen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bauer and E. Kuwert, Existence of Minimizing Willmore Surfaces of Prescribed Genus, IMRN Intern. Math. Res. Notes 10 (2003), 553–576.

    Article  MathSciNet  Google Scholar 

  2. B. Y. Chen, Some conformal Invariants of Submanifolds and their Application, Bollettino della Unione Matematica Italiana, Serie 4 10 (1974) 380–385.

    Google Scholar 

  3. M. P. Do Carmo,“Riemannian Geometry”, Birkhäuser, Boston-Basel-Berlin, 1992.

    MATH  Google Scholar 

  4. L. Simon, Existence of surfaces minimizing the Willmore functional, Communications in Analysis and Geometry, 1, No. 2 (1993), 281–326.

    MathSciNet  MATH  Google Scholar 

  5. J. Weiner, On a problem of Chen, Willmore, et al., Indiana University Mathematical Journal 27 (1978), 18–35.

    MathSciNet  Google Scholar 

  6. T. J. Willmore, Note on Embedded Surfaces, An. Stiint. Univ.“Al. I. Cusa” Iasi Sect. Ia, 11B(1965), 493–496.

    MathSciNet  Google Scholar 

  7. T. J. Willmore,“Total curvature in Riemannian Geometry”, Wiley, 1982.

    Google Scholar 

References

  1. W. K. Allard, On the first variation of a varifold, Annals of Mathematics 95 (1972), 417–491.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Kuwert and R. Schätzle, Removability of point singularities of Willmore surfaces, Annals of Mathematics 160 (2004) 315–357.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces, Inventiones Mathematicae 69 (1982), 269–291.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Simon,“Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis Australian National University, Vol. 3, 1983.

    Google Scholar 

  5. L. Simon, Existence of surfaces minimizing the Willmore functional, Communications in Analysis and Geometry, 1 (1993), 281–326.

    MathSciNet  MATH  Google Scholar 

References

  1. S. Blatt, A singular example for the Willmore flow, Analysis, 29 (2009), 407–440.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Chill, E. Fasangová and R. Schätzle, Willmore blow ups are never compact, Duke Mathematical Journal, 147 (2009), 345–376.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. P. Do Carmo, “Riemannian Geometry”, Birkhäuser, Boston-Basel-Berlin, 1992.

    MATH  Google Scholar 

  4. S. D. Eidel’man,“Parabolic Systems”, North-Holland, Amsterdam, 1969.

    Google Scholar 

  5. R. Hamilton, Three-manifolds with positive Ricci curvature, Journal of Differential Geometry, 17 (1982), 255–306.

    MathSciNet  MATH  Google Scholar 

  6. E. Kuwert and R. Schätzle, The Willmore Flow with small initial energy, Journal of Differential Geometry, 57 (2001), 409–441.

    MathSciNet  MATH  Google Scholar 

  7. E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional, Communications in Analysis and Geometry, 10 (2002), 307–339.

    MathSciNet  MATH  Google Scholar 

  8. U. F. Mayer and G. Simonett, A numerical scheme for radially symmetric solutions of curvature driven free boundary problems, with applications to the Willmore Flow, Interfaces and Free Boundaries, 4 (2002), 89–109.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. S. Massey,“Algebraic Topology: An Introduction”, Springer Verlag, New York-Heidelberg-Berlin, 1977.

    Google Scholar 

  10. J. H. Michael and L. Simon, Sobolev and mean-value inequalities on generalized submanifolds ofn, Communications on Pure and Applied Mathematics, 26 (1973), 361–379.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, Journal de Mathématiques pures et appliquées, 72 (1993), 247–286.

    MathSciNet  MATH  Google Scholar 

  2. H. M. Farkas and I. Kra, “Riemann Surfaces”, Springer Verlag, Berlin-Heidelberg-New York, 1991.

    Google Scholar 

  3. C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Mathematica, 129 (1972), 137–193.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helvetici, 32 (1957), 13–72.

    Article  MATH  Google Scholar 

  5. S. Müller and V. Šverák, On surfaces of finite total curvature, Journal of Differential Geometry, 42 (1995), 229–258.

    MathSciNet  MATH  Google Scholar 

  6. R. Osserman, “A Survey of Minimal Surfaces”, Van Nostrand, 1969.

    Google Scholar 

  7. R. Schoen and K. Uhlenbeck, Boundary regularity and and the Dirichlet problem for harmonic maps, Journal of Differential Geometry, 18 (1983), 253–268.

    MathSciNet  MATH  Google Scholar 

  8. E. H. Spanier, “Algebraic Topology”, McGraw Hill, 1966.

    Google Scholar 

  9. H. Wente, An existence theorem for surfaces of constant mean curvature, Journal Math. Anal. Appl., 26 (1969), 318–344.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. R. Bryant, A duality theorem for Willmore surfaces, Journal of Differential Geometry, 20 (1984), 23–53.

    MathSciNet  MATH  Google Scholar 

  2. J. H. Eschenburg, Willmore surfaces and Moebius Geometry, manuscript (1988).

    Google Scholar 

  3. H. M. Farkas and I. Kra, “Riemann Surfaces”, Springer Verlag, Berlin-Heidelberg-New York, 1991.

    Google Scholar 

  4. D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Springer Verlag, 3.Auflage, Berlin-Heidelberg-New York-Tokyo, 1998.

    Google Scholar 

  5. A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helvetici, 32 (1957), 13–72.

    Article  MATH  Google Scholar 

  6. E. Kuwert and R. Schätzle, The Willmore Flow with small initial energy, Journal of Differential Geometry, 57 (2001), 409–441.

    MathSciNet  MATH  Google Scholar 

  7. E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional, Communications in Analysis and Geometry, 10 (2002), 307–339.

    MathSciNet  MATH  Google Scholar 

  8. E. Kuwert and R. Schätzle, Removability of point singularities of Willmore surfaces, Annals of Mathematics, 160 (2004), 315–357.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Montiel, Spherical Willmore surfaces in the four-sphere, Transactions of the American Mathematical Society, 352 (2000), 4469–4486.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Müller and V. Šverák, On surfaces of finite total curvature, Journal of Differential Geometry, 42 (1995), 229–258.

    MathSciNet  MATH  Google Scholar 

  11. R. Osserman, “A Survey of Minimal Surfaces”, Van Nostrand, 1969.

    Google Scholar 

  12. T. Riviére, Analysis aspects of Willmore surfaces, Inventiones Mathematicae, 174 (2008), 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Simon, “Singular Sets and Asymptotics in Geometric Analysis”, Lipschitz lectures, Institut für Angewandte Mathematik, Universität Bonn, 1996.

    Google Scholar 

References

  1. M. Bauer and E. Kuwert, Existence of Minimizing Willmore Surfaces of Prescribed Genus, IMRN Intern. Math. Res. Notes, 10 (2003), 553–576.

    Article  MathSciNet  Google Scholar 

  2. H. M. Farkas and I. Kra, “Riemann Surfaces”, Springer Verlag, Berlin-Heidelberg-New York, 1991.

    Google Scholar 

  3. E. Kuwert and R. Schätzle, Closed surfaces with bounds on their Willmore energy, to appear in Annali della Scuola Normale Superiore di Pisa, arXiv:math.DG/1009.5286.

    Google Scholar 

  4. S. Müller and V. Šverák, On surfaces of finite total curvature, Journal of Differential Geometry, 42 (1995), 229–258.

    MathSciNet  MATH  Google Scholar 

  5. A. Tromba, “Teichmüller Theory in Riemannian Geometry”, Birkhäuser, 1992.

    Google Scholar 

  6. L. Simon, “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis Australian National University, Vol. 3, 1983.

    Google Scholar 

References

  1. E. Kuwert and X. LI, W2,2-conformal immersions of a closed Riemann surface into ℝn, 2010, arXiv:math.DG/1007.3967.

    Google Scholar 

  2. E. Kuwert and R. Schätzle, Minimizers of theWillmore functional under fixed conformal class, 2007, arXiv:math.DG/1009.6168.

    Google Scholar 

  3. E. Kuwert and R. Schätzle, Closed surfaces with bounds on their Willmore energy, to appear in Annali della Scuola Normale Superiore di Pisa, 2011 arXiv:math.DG/1009.5286.

    Google Scholar 

  4. P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces, Inventiones Mathematicae, 69 (1982), 269–291.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Montiel and A. Ros, Minimal immersions of surfaces by the first Eigenfunctions and conformal Area, Inventiones Mathematicae 83 (1986), 153–166.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Tromba, “Teichmüller Theory in Riemannian Geometry”, Birkhäuser, 1992.

    Google Scholar 

  7. T. Rivière, Variational Principles for immersed Surfaces with L 2-bounded Second Fundamental Form, 2010, arXiv:math.AP/1007.2997.

    Google Scholar 

  8. R. Schätzle, Estimation of the conformal factor under bounded Willmore energy, (2011), preprint.

    Google Scholar 

References

  1. M. Bauer and E. Kuwert, Existence of Minimizing Willmore Surfaces of Prescribed Genus, IMRN Intern. Math. Res. Notes, 10 (2003), 553–576.

    Article  MathSciNet  Google Scholar 

  2. W. Kühnel and U. Pinkall, On total mean curvature, Quarterly of Applied Mathematics, 37 (1986), 437–447.

    MATH  Google Scholar 

  3. R. Kusner, Global geometry of extremal surfaces in three-space, Dissertation University of California, Berkeley, 1987.

    Google Scholar 

  4. R. Kusner, Comparison Surfaces for the Willmore problem, Pacific Journal ofMathematics, 138 (1989), 317–345.

    MathSciNet  MATH  Google Scholar 

  5. E. Kuwert, X. Li and R. Schätzle, The large genus limit of the infimum of the Willmore energy, American Journal of Mathematics (2009), to appear.

    Google Scholar 

  6. E. Kuwert and R. Schätzle, The Willmore Flow with small initial energy, Journal of Differential Geometry, 57 (2001), 409–441.

    MathSciNet  MATH  Google Scholar 

  7. H.B. Lawson, Complete minimal surfaces in S 3, Annals of Mathematics, 92 (1970), 335–374.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Li and S.T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces, Inventiones Mathematicae 69 (1982), 269–291.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Simon, Existence of surfaces minimizing the Willmore functional, Communications in Analysis and Geometry, 1 (1993), 281–326.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giuseppe Mingione

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Kuwert, E., Schätzle, R. (2012). The Willmore functional. In: Mingione, G. (eds) Topics in Modern Regularity Theory. CRM Series, vol 13. Edizioni della Normale. https://doi.org/10.1007/978-88-7642-427-4_1

Download citation

Publish with us

Policies and ethics