Skip to main content

Part of the book series: Publications of the Scuola Normale Superiore ((CRMSNS,volume 12))

  • 674 Accesses

Abstract

This paper briefly summarizes previous work on complex classical mechanics and its relation to quantum mechanics. It then introduces a previously unstudied area of research involving the complex particle trajectories associated with elliptic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The time evolution operator of such PT quantum systems has the usual form e i Ht and this operator is unitary with respect to the Hermitian adjoint appropriate for the specific Hamiltonian H. Instead of the Dirac adjoint †, the adjoint for a PT-symmetric Hamiltonian H is given by CPT, where C is a linear operator satisfying the three simultaneous equations: C 2 = 1, [C,PT] = 0, and [C, H] = 0. The CPT norm is strictly real and positive and thus the theory is associated with a conventional Hilbert space. The time evolution is unitary because it preserves the CPT norms of vectors. A detailed discussion of these features of PT quantum mechanics is presented in [6].

    Article  MathSciNet  Google Scholar 

  2. The eigenfunctions ψ(x) of the Hamiltonian in (2.1) obey the differential equation −ψ″(x) + x 2(i x)ɛ ψ(x) = (x). These eigenfunctions are localized and decay exponentially in pairs of Stokes’ wedges in the complex-x plane, as is explained in S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998) [3]. The eigenfunctions live in L 2 but with the Dirac adjoint † replaced by the CPT adjoint. The eigenvalues are real and positive (see [7]). There is extremely strong numerical evidence that the set of eigenfunctions form a complete basis, but to our knowledge this result has not yet been rigorously established. Note that for the case ε = 2 the potential becomes −x 4, but in the complex plane this potential is not unbounded below! (The term unbounded below cannot be used in this context because the complex numbers are not ordered.) PT quantum mechanics has many qualitative features, such as arbitrarily fast time evolution, that distinguish it from conventional Dirac-Hermitian quantum mechanics. These features are discussed in [6].

    Article  MathSciNet  MATH  Google Scholar 

  3. C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  4. C. M. Bender, S. Boettcher, and P. N. Meisinger, J. Math. Phys. 40, 2201 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. M. Bender, D. C. Brody and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002); ibid.92, 119902E (2004).

    Article  MathSciNet  Google Scholar 

  6. C. M. Bender, Contemp. Phys. 46, 277 (2005) and Repts. Prog. Phys. 70, 947 (2007).

    Article  MathSciNet  Google Scholar 

  7. P. Dorey, C. Dunning, and R. Tateo, J. Phys. A: Math. Gen. 34 L391 (2001); ibid. 34, 5679 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006); Y. Goldfarb, and D. J. Tannor, J. Chem. Phys. 127, 161101 (2007); Y. Goldfarb, J. Schiff, and D. J. Tannor, J. Chem. Phys. 128, 164114 (2008).

    Article  Google Scholar 

  9. C. D. Yang, Ann. Phys. 321, 2876 (2006); Chaos, Solitons and Fractals, 30, 342 (2006) and Modeling quantum harmonic oscillator in complex domain 33, 1073 (2007).

    Article  MATH  Google Scholar 

  10. P. Dorey, C. Dunning, and R. Tateo, J. Phys. A: Math. Gen. 40, R205 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Mostafazadeh, [arXiv:0810.5643] (2009).

    Google Scholar 

  12. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008); K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008).

    Article  Google Scholar 

  13. T. Kottos, Nature Phys. 6, 166 (2010).

    Article  Google Scholar 

  14. Experimental observations of the PT phase transition using optical wave guides are reported in: A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, and D. N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009); C. E. Rüter, K. G. Makris, R. Elganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nature Phys. 6, 192 (2010).

    Google Scholar 

  15. Experimental observation of PT-symmetric diffusion of spin-polarized rubidium atoms is reported in K. F. Zhao, M. Schaden, and Z. Wu, Phys. Rev. A 81, 042903 (2010).

    Article  Google Scholar 

  16. A. Nanayakkara, Czech. J. Phys. 54, 101 (2004) and J. Phys. A: Math. Gen. 37, 4321 (2004).

    Article  MathSciNet  Google Scholar 

  17. F. Calogero, D. Gomez-Ullate, P. M. Santini, and M. Sommacal, J. Phys. A: Math. Gen. 38, 8873–8896 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. M. Bender, J.-H. Chen, D. W. Darg, and K. A. Milton, J. Phys. A: Math. Gen. 39, 4219 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. C. M. Bender and D. W. Darg, J. Math. Phys. 48, 042703 (2007).

    Article  MathSciNet  Google Scholar 

  20. C. M. Bender and D. W. Hook, J. Phys. A: Math. Theor. 41, 244005 (2008).

    Article  MathSciNet  Google Scholar 

  21. Yu. Fedorov and D. Gomez-Ullate, Physica D 227, 120 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  22. C. M. Bender, D. D. Holm, and D. W. Hook, J. Phys. A: Math. Theor. 40, F793–F804 (2007).

    Article  MathSciNet  Google Scholar 

  23. C. M. Bender, D. C. Brody, J.-H. Chen, and E. Furlan, J. Phys. A: Math. Theor. 40, F153 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Fring, J. Phys. A: Math. Theor. 40, 4215 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Bagchi and A. Fring, J. Phys. A: Math. Theor. 41, 392004 (2008).

    Article  MathSciNet  Google Scholar 

  26. C. M. Bender and J. Feinberg, J. Phys. A: Math. Theor. 41, 244004 (2008).

    Article  MathSciNet  Google Scholar 

  27. T. L. Curtright and D. B. Fairlie, J. Phys. A: Math. Theor. 41 No 24 (20 June 2008) 244009 (2pp)

    Google Scholar 

  28. C. M. Bender, F. Cooper, A. Khare, B. Mihaila, and A. Saxena, Pramana J. Phys. 73, 375 (2009).

    Article  Google Scholar 

  29. P. E. G. Assis and A. Fring, arXiv:0901.1267.

    Google Scholar 

  30. C. M. Bender, J. Feinberg, D. W. Hook, and D. J. Weir, Pramana J. Phys. 73, 453 (2009).

    Article  Google Scholar 

  31. A. V. Smilga, J. Phys. A: Math. Theor. 42, 095301 (2009).

    Article  MathSciNet  Google Scholar 

  32. A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009).

    Article  Google Scholar 

  33. C. M. Bender, D. W. Hook, P. N. Meisinger, and Q. Wang, Phys. Rev. Lett. 104, 061601 (2010) and Ann. Phys. 325, 2332 (2010).

    Article  Google Scholar 

  34. J. D. Jackson, “Classical Electrodynamics”, John Wiley & Sons, New York, 1975, Second Ed., Secs. 7.4 and 8.1.

    MATH  Google Scholar 

  35. C. M. Bender, D. C. Brody, and D. W. Hook, J. Phys. A: Math. Theor. 41, 352003 (2008).

    Article  MathSciNet  Google Scholar 

  36. We do not attempt here to make any association between complex energy as used in this paper and unstable states. Unstable states are characteristic of open quantum systems, while in this paper the quantum systems discussed are closed systems.

    Google Scholar 

  37. C. M. Bender, D. D. Holm, and D. W. Hook, J. Phys. A: Math. Theor. 40, F81 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  38. C. M. Bender and T. Arpornthip, Pramana J. Phys. 73, 259 (2009).

    Article  Google Scholar 

  39. An elementary discussion of cnoidal functions (Jacobi elliptic functions) is given in A. J. Brizard, Eur. J. Phys. 30, 729 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  40. J. V. Armitage and W. F. Eberlein, “Elliptic Functions”, London Mathematical Society Student Texts (No. 67), Cambridge University Press, Cambridge, 2006.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Bender, C.M., Hook, D.W., Kooner, K.S. (2011). Complex elliptic pendulum. In: Costin, O., Fauvet, F., Menous, F., Sauzin, D. (eds) Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation vol. I. Publications of the Scuola Normale Superiore, vol 12. Edizioni della Normale. https://doi.org/10.1007/978-88-7642-379-6_1

Download citation

Publish with us

Policies and ethics