Skip to main content
  • 1259 Accesses

Abstract

Nuclear medicine has been i nvolved in the field of functional tumor imaging for decades. Its hallmark is the detection of viable tumor tissue based on functional and biological characteristics rather than on an altered tumor morphology. Scintigraphy has an important role in monitoring the response to therapy, by distinguishing active tumor mass, where the tumor-seeking tracer still accumulates, from residual mass composed of necrosis or scar, where tracer no longer accumulates. The use of scintigraphy in tumor detection depends on the mechanism of tracer uptake in the tumor, the pharmacokinetic and normal biodistribution of the tracer, and on the technology of the detecting system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowler AM (2014) A molecular approach to breast imaging. J Nucl Med 55:177–180.

    Article  PubMed  Google Scholar 

  2. Sun Y, Wei W, Yang HW, Liu JL (2013) Specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis. Eur J Nucl Med Mol Imaging 40:450–463.

    Article  PubMed  Google Scholar 

  3. Brem RF, Shahan C, Rapleyea JA et al (2010) Detection of occult foci of breast cancer using breast-specific gamma imaging in women with one mammographic or clinically suspicious breast lesion. Acad Radiol 17:735–743.

    Article  PubMed  Google Scholar 

  4. Hruska CB, Phillips S W, Whaley DH et al (2008) Molecular breast imaging: use of a dual-head dedicated gamma camera to detect small breast tumors. AJR Am J Roentgenol 191:1805–1815.

    Article  PubMed  Google Scholar 

  5. MacDonald L, Edwards J, Lewellen T et al (2009) Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med 50:1666–1675.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Moliner L, Gonzalez AJ, Soriano A et al (2012) Design and evaluation of the MAMMI dedicated breast PET. Med Phys 39:5393–5404.

    Article  CAS  PubMed  Google Scholar 

  7. Kalinya JE, Berg WA, Schilling K et al (2014) Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. Eur J Nucl Med Mol Imaging 41:260–275.

    Article  Google Scholar 

  8. van Leeuwen FW, Buckle T, Kersbergen A et al (2009) Noninvasive functional imaging of P-glycoprotein-mediated doxorubicin resistance in a mouse model of hereditary breast cancer to predict response, and assign P-gp inhibitor sensitivity. Eur J Nucl Med Mol Imaging 36:406–412

    Article  Google Scholar 

  9. Vecchio SD, Zannetti A, Salvatore B et al (2006) Functional imaging of multidrug resistance in breast cancer. Phys Med 21(Suppl 1):24–27.

    Article  PubMed  Google Scholar 

  10. Koolen BB, Vrancken Peeters MJ, Wesseling J et al (2012) Association of primary tumour FDG uptake with clinical, histopathological and molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 39:1830–1838.

    Article  CAS  PubMed  Google Scholar 

  11. Ekmekcioglu O, Aliyev A, Yilmaz S et al (2013) Correlation of 18F-fluorodeoxyglucose uptake with histopathological prognostic factors in breast carcinoma. Nucl Med Commun 34:1055–1067.

    Article  CAS  PubMed  Google Scholar 

  12. Buck A, Schirrmeister H, Kühn T et al (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 29:1317–1323.

    Article  CAS  PubMed  Google Scholar 

  13. Koolen BB, Vidal-Sicart S, Benlloch Baviera JM, Valdés Olmos RA (2014) Evaluating heterogeneity of primary tumor (18)F-FDG uptake in breast cancer with a dedicated breast PET (MAMMI): a feasibility study based on correlation with PET/CT. Nucl Med Commun 35:446–452.

    Article  CAS  PubMed  Google Scholar 

  14. Brem RF, Ioffe M, Rapelyea JA et al (2009) Invasive lobular carcinoma: detection with mammography sonography MRI, and breast-specific gamma imaging. AJR Am J Roentgenol 192:379–383.

    Article  PubMed  Google Scholar 

  15. Rhodes DJ, Hruska CB, Phillips SW et al (2011) Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology 258:106–118.

    Article  PubMed  Google Scholar 

  16. Berg WA, Madsen KS, Schilling K et al (2011) Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology 258:59–72.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Berg WA1, Madsen KS, Schilling K et al (2012) Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer. AJR Am J Roentgenol 198:219–232.

    Article  PubMed  Google Scholar 

  18. Dunnwald LK, Gralow JR, Ellis GK et al (2005) Residual tumor uptake of [99mTc]-sestaMIBI after neoadjuvant chemotherapy for locally advanced breast carcinoma predicts survival. Cancer 103:680–688.

    Article  CAS  PubMed  Google Scholar 

  19. Mitchell D1, Hruska CB, Boughey JC et al (2013) 99mTc-sestaMIBI using a direct conversion molecular breast imaging system to assess tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer. Clin Nucl Med 38:949–956.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Even-Sapir, E. (2015). Scintimammography. In: Hodler, J., von Schulthess, G.K., Kubik-Huch, R.A., Zollikofer, C.L. (eds) Diseases of the Chest and Heart 2015–2018. Springer, Milano. https://doi.org/10.1007/978-88-470-5752-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5752-4_33

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5751-7

  • Online ISBN: 978-88-470-5752-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics