Skip to main content

Abstract

Magnetic resonance urography (MRU) is a powerful clinical tool that fuses anatomic information with functional data in a single test without the use of ionizing radiation. This chapter provides an overview of the technical aspects, as well as common clinical applications, of MRU, with an emphasis on evaluating hydronephrosis. A fluid challenge is an essential part of our MRU protocol and enables the definition of compensated or decompensated kidneys within the spectrum of hydronephrosis. This classification may have prognostic implications when surgery is being considered. In addition, underlying uropathy can be identified on the anatomical scans, and renal scarring can be seen on both anatomical and dynamic scans. MRU can identify and categorize dysmorphic kidneys in vivo and may provide insight into congenital abnormalities seen in conjunction with vesicoureteric reflux (VUR). MRU is still in its infancy, and as the technique develops and becomes widely available, it seems likely that it will supplant renal scintigraphy for evaluating renal tract disorders in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imag 18:714–725.

    Article  Google Scholar 

  2. Annet L, Hermoye L, Peeters F et al (2004) Glomerular filtration rate: assessment with dynamic contrast enhanced MRI and a cortical compartment model in the rabbit kidney. J Magn Reson Imag 20:843–849.

    Article  Google Scholar 

  3. Bokacheva L, Rusinek H, Zhang JL et al (2009) Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imag 29:371–382.

    Article  Google Scholar 

  4. Mendichovszky I, Pedersen M, Frøkiær J et al (2008) How accurate is dynamic contrast enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imag 27:925–931.

    Article  Google Scholar 

  5. English PJ, Testa HJ, Lawson RS et al (1987) Modified method of diuresis renography for the assessment of equivocal pelviureteric junction obstruction. Br J Urol 59:10–14.

    Article  CAS  PubMed  Google Scholar 

  6. Brown SC, Upsdell SM, O’Reilly PH (1992) The importance of renal function in the interpretation of diuresis renography. Br J Urol 69:121–125.

    Article  CAS  PubMed  Google Scholar 

  7. Vivier PH, Dolores M, Taylor M et al. MR urography in children. Part 1: how we do the F0 technique. Ped Radiol (inpress).

    Google Scholar 

  8. Rohrschneider WK, Hoffend J, Becker K et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. I. Evaluation of the normal status in an animal model. Pediatr Radiol 30:511–522.

    Article  CAS  PubMed  Google Scholar 

  9. Rohrschneider WK, Becker K, Hoffend J et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30:523–532.

    Article  CAS  PubMed  Google Scholar 

  10. Giesel FL, Von Tengg-Koblig H, Wilkinson ID et al (2006) Influence of human serum albumin on longitudinal and transverse relaxation rates (R1 and R2) of magnetic resonance contrast agents. Invest Radiol 41:222–228.

    Article  CAS  PubMed  Google Scholar 

  11. Mitterberger M, Pinggera GM, Neururer R et al (2008) Comparison of contrast enhanced colour Doppler imaging (CDI), computed tomography (CT) and magnetic resonance imaging (MRI) for the detection of crossing vessels in patients with ureteropelvic junction obstruction (UPJO). Eur Urol 53:1254–1262.

    Article  PubMed  Google Scholar 

  12. Jones RA, Schmotzer B, Little S, Grattan-Smith JD (2008) MRU post-processing. Ped Radiol 38(Suppl. 1):S18–27.

    Article  Google Scholar 

  13. Rusinek H, Boykov Y, Kaur M et al (2007) Performance of an automated segmentation algorithm for 3D MR renography. Magn Reson Med 57:1159–1167.

    Article  PubMed  Google Scholar 

  14. Jones RA, Easley K, Little SB et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: Part 1, Functional assessment. AJR Am J Roentgenol 185:1598–1607.

    Article  PubMed  Google Scholar 

  15. Parker GJM, Padhani AR (2004) T1-W DCE MRI: T1 weighted dynamic contrast enhanced MRI. In: Toft P (Ed) Quantitative MRI of the brain, 1st edition. Wiley, Chichester, UK, pp 341–344.

    Google Scholar 

  16. Mørkenberg J, Taagehø JF, Væver PN et al (1998) In-vivo measurement of T1 and T2 relaxivity in the kidney cortex of the pig-based on a two compartment steady state model. Magn Reson Imag 16:933–942.

    Article  Google Scholar 

  17. Yang C, Karczmar GS, Medved M et al (2009) Reproducibility assessment of a multiple reference tissue method of quantitative dynamic contrast enhanced MRI analysis. Magn Reson Med 61:851–859.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Zhang JL, Rusinek H, Bokacheva L et al (2009) Use of cardiac output to improve measurement of input function in quantitative dynamic contrast enhanced MRI. J Magn Reson Imag 30:656–665.

    Article  CAS  Google Scholar 

  19. Pedersen M, Shi Y, Anderson P et al (2004) Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med 51:510–517.

    Article  PubMed  Google Scholar 

  20. Madsen MT (1992) A simplified formulation of the gamma variate function. Phys Med Biol 37:1597–1600.

    Article  Google Scholar 

  21. Weinmann HJ, Laniado M, Mutzel W (1984) Pharmacokinetics of Gd-DTPA/dimeglumine after intraveneous injection into healthy volunteers. Physiol Chem Phys Med 16:167–172.

    CAS  Google Scholar 

  22. Wedeking P, Eaton S, Covell D et al (1990) Pharmokinetic analysis of blood distribution of intraveneously administered 153-Gd labeled Gd(DTPA)2 and 99M-Tc(DTPA) in rats. Magn Reson Imag 8:567–575.

    Article  CAS  Google Scholar 

  23. Hosfield MA, Thornton JS, Gill A et al (2009) A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion. Phys Med Biol 54:2933–2949.

    Article  Google Scholar 

  24. Krier JD, Ritman EL, Bajzer Z et al (2001) Noninvasive measurement of concurrent single-kidney perfusion, glomerular filtration, and tubular function. Am J Physiol Renal Physiol 281:F630–638.

    CAS  PubMed  Google Scholar 

  25. Jones RA, Votaw JR, Salman K et al. MRI evaluation of renal structure and function related to disease: Technical review of image acquisition, post-processing and mathematical modeling steps. JMRI (in-press).

    Google Scholar 

  26. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab 3:1–7.

    Article  CAS  PubMed  Google Scholar 

  27. Rutland MD (1979) A single injection technique for subtraction of blood background in 131I-hippuran renograms. Br J Radiol 52:34–137.

    Article  Google Scholar 

  28. Peters AM (1994) Graphical analysis of dynamic data: the Patlak-Rutland plot. Nucl Med Commun 15:669–672.

    Article  CAS  PubMed  Google Scholar 

  29. Hackstein N, Kooijman H, Tomaselli S, Rau WS (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imag 22:406–414.

    Article  Google Scholar 

  30. Buckley DL, Shurrab A, Cheung CM (2006) Measurement of single kidney function using dynamic contrast enhanced MRI: Comparison of two models in human subjects. J Magn Reson Imag 24:1117–1123.

    Article  Google Scholar 

  31. Lassen NA, Perl WP (1979) Tracer kinetic methods in medical physiology. Raven Press, New York, NY.

    Google Scholar 

  32. Sourbron, SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol 43:40–48.

    Article  PubMed  Google Scholar 

  33. Brandt JR, Wong CS, Hanrahan JD et al (2006) Estimating absolute glomerular filtration rate in children. Ped Nephrol 21:1865–1872.

    Article  Google Scholar 

  34. Jones RA, Perez-Brayfield MR, Kirsch AJ, Grattan-Smith JD (2004) Renal transit time with MR urography in children. Radiology 233:41–50.

    Article  PubMed  Google Scholar 

  35. O’Reilly PH. Obstructive uropathy. Q J Nucl Med 2002; 46, 295–303.

    CAS  Google Scholar 

  36. Peters CA (2010) Congenital urine flow impairments of the upper urinary tract: pathophysiology and experimental studies. In: Pediatric Urology. Elsevier. Philadelphia

    Google Scholar 

  37. Csaicsich D, Greenbaum LA, Aufricht C (2004) Upper urinary tract: when is obstruction obstruction? Curr Opin Urol 14:213–217.

    Article  PubMed  Google Scholar 

  38. Eskild-Jensen A, Gordon I, Piepsz A, Frokiaer J (2005) Congenital unilateral hydronephrosis: a review of the impact of diuretic renography on clinical treatment. J Urol 173:1471–1476.

    Article  PubMed  Google Scholar 

  39. Chertin B, Pollack A, Koulikov D, et al (2006) Conservative treatment of ureteropelvic junction obstruction in children with antenatal diagnosis of hydronephrosis: lessons learned after 16 years of follow-up. Eur Urol 49:734–738; discussion 739.

    Article  PubMed  Google Scholar 

  40. Ulman I, Jayanthi VR, Koff SA (2000) The long-term followup of newborns with severe unilateral hydronephrosis initially treated nonoperatively. J Urol 164:1101–1105.

    Article  CAS  PubMed  Google Scholar 

  41. Koff SA (1990) Pathophysiology of ureteropelvic junction obstruction. Clinical and experimental observations. Urol Clin North Am 17:263–272.

    CAS  PubMed  Google Scholar 

  42. Fernbach SK, Maizels M, Conway JJ (1993) Ultrasound grading of hydronephrosis: introduction to the system used by the Society for Fetal Urology. Pediatr Radiol 23:478–480.

    Article  CAS  PubMed  Google Scholar 

  43. Elder JS, Stansbrey R, Dahms BB, Selzman AA (1995) Renal histological changes secondary to ureteropelvic junction obstruction. J Urol 154:719–722.

    Article  CAS  PubMed  Google Scholar 

  44. Little SB, Jones RA, Grattan-Smith JD (2008) Evaluation of UPJ obstruction before and after pyeloplasty using MR urography. Pediatr Radiol 38 Suppl 1:S106–124.

    Article  PubMed  Google Scholar 

  45. Bailey RR (1973) The relationship of vesico-ureteric reflux to urinary tract infection and chronic pyelonephritis-reflux nephropathy. Clin Nephrol 1:132–141.

    CAS  PubMed  Google Scholar 

  46. Fanos V, Cataldi L (2004) Antibiotics or surgery for vesicoureteric reflux in children. Lancet 364:1720–1722.

    Article  PubMed  Google Scholar 

  47. Marra G, Oppezzo C, Ardissino G et al (2004) Severe vesicoureteral reflux and chronic renal failure: a condition peculiar to male gender? Data from the ItalKid Project. J Pediatr 144:677–681.

    Article  PubMed  Google Scholar 

  48. Greenfield SP, Wan J (2010) The diagnosis and medical management of primary vesicoureteral reflux. In: Pediatric Urology. Elsevier, Philadelphia.

    Google Scholar 

  49. Yeung CK, Godley ML, Dhillon HK et al (1997) The characteristics of primary vesico-ureteric reflux in male and female infants with pre-natal hydronephrosis. Br J Urol 80:319–327.

    Article  CAS  PubMed  Google Scholar 

  50. Woolf AS, Price KL, Scambler PJ, Winyard PJ (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15:998–1007.

    Article  PubMed  Google Scholar 

  51. Barkovich AJ, Kuzniecky RI (1996) Neuroimaging of focal malformations of cortical development. J Clin Neurophysiol 13:481–494.

    Article  CAS  PubMed  Google Scholar 

  52. Costantini F (2006) Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74:402–421.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Jones, R.A., Grattan-Smith, J.D., Little, S. (2014). MR Urography in Children. In: Hodler, J., von Schulthess, G.K., Kubik-Huch, R.A., Zollikofer, C.L. (eds) Diseases of the Abdomen and Pelvis 2014–2017. Springer, Milano. https://doi.org/10.1007/978-88-470-5659-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5659-6_39

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5658-9

  • Online ISBN: 978-88-470-5659-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics