Skip to main content

Function and Microstructure by Hyperpolarized Gas MRI

  • Chapter
  • First Online:
Mechanics of Breathing

Abstract

The ability to regionally assess lung function and/or microstructure has both scientific and diagnostic advantages, and yet the lung is notoriously difficult to image. New techniques and hardware are being developed that may allow pulmonary 1H MRI to rival CT for diagnostic value in the coming years, but hyperpolarized gas MRI via 3He or 129Xe provides exceptional detail in terms of real-time ventilation and quantification of microstructure and regional function. The purpose of this chapter is to detail some, but not all, of the aspects of hyperpolarized gas MRI that relate to regional function (ventilation imaging) and microstructure (diffusion imaging). Through an understanding of regional structure-function relationships, we can better understand the pathophysiology of lung disease and the potential for future therapeutic remedies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yablonskiy DA et al (2009) Quantification of lung microstructure with hyperpolarized 3He diffusion MRI. J Appl Physiol 107(4):1258–1265

    PubMed Central  PubMed  Google Scholar 

  2. Leawoods JC et al (2001) Hyperpolarized 3He gas production and MR imaging of the lung. Concept Magn Reson 13(5):277–293

    CAS  Google Scholar 

  3. Cummings WJ et al (1995) Optical pumping of Rb vapor using high-power Ga1-xAlxAs diode laser arrays. Phys Rev A 51(6):4842–4851

    CAS  PubMed  Google Scholar 

  4. Cates GD et al (1990) Laser production of large nuclear-spin polarization in frozen xenon. Phys Rev Lett 65(20):2591–2594

    CAS  PubMed  Google Scholar 

  5. Driehuys B et al (1996) High-volume production of laser-polarized 129Xe. Appl Phys Lett 69(12):1668–1670

    CAS  Google Scholar 

  6. Rosen MS et al (1999) Polarized 129Xe optical pumping/spin exchange and delivery system for magnetic resonance spectroscopy and imaging studies. Rev Sci Instrum 70(2):1546–1552

    CAS  Google Scholar 

  7. Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69(2):629–642

    CAS  Google Scholar 

  8. Nikolaou P et al (2009) Generation of laser-polarized xenon using fiber-coupled laser-diode arrays narrowed with integrated volume holographic gratings. J Magn Reson 197(2):249–254

    CAS  PubMed  Google Scholar 

  9. Nelson IA, Chann B, Walker TG (2000) Spin-exchange optical pumping using a frequency-narrowed high power diode laser. Appl Phys Lett 76(11):1356–1358

    CAS  Google Scholar 

  10. Babcock E et al (2003) Hybrid spin-exchange optical pumping of 3He. Phys Rev Lett 91(12):123003

    PubMed  Google Scholar 

  11. Jacob RE, Morgan SW, Saam B (2002) 3He spin exchange cells for magnetic resonance imaging. J Appl Phys 92(3):1588–1597

    CAS  Google Scholar 

  12. Jacob RE et al (2001) Wall relaxation of 3He in spin-exchange cells. Phys Rev Lett 87(14):143004

    CAS  PubMed  Google Scholar 

  13. Schmiedeskamp J et al (2006) Relaxation of spin polarized 3He by magnetized ferromagnetic contaminants. Eur Phys J D 38(3):445–454

    CAS  Google Scholar 

  14. Becker J et al (1994) Study of mechanical compression of spin-polarized 3He gas. Nucl Instrum Methods Phys Res, Sect A 346(1–2):45–51

    CAS  Google Scholar 

  15. Gentile TR et al (2000) Demonstration of a compact compressor for application of metastability-exchange optical pumping of 3He to human lung imaging. Magn Reson Med 43(2):290–294

    CAS  PubMed  Google Scholar 

  16. Gentile TR et al (2001) Compressing spin-polarized 3He with a modified diaphragm pump. J Res Natl Inst Stand Technol 106:709–729

    CAS  Google Scholar 

  17. van Beek EJ et al (2009) Hyperpolarised 3He MRI versus HRCT in COPD and normal volunteers: PHIL trial. Eur Respir J 34(6):1311–1321

    PubMed  Google Scholar 

  18. Ruset IC, Ketel S, Hersman FW (2006) Optical pumping system design for large production of hyperpolarized. Phys Rev Lett 96(5):053002

    CAS  PubMed  Google Scholar 

  19. Schrank G et al (2009) Characterization of a low-pressure high-capacity 129Xe flow-through polarizer. Phys Rev A 80(6):063424

    Google Scholar 

  20. Nikolaou P et al (2013) Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc Natl Acad Sci U S A 110(35):14150–14155

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Zheng J et al (2002) Combined MR proton lung perfusion/angiography and helium ventilation: potential for detecting pulmonary emboli and ventilation defects. Magn Reson Med 47(3):433–438

    PubMed Central  PubMed  Google Scholar 

  22. Dugas JP et al (2004) Hyperpolarized (3)He MRI of mouse lung. Magn Reson Med 52(6):1310–1317

    CAS  PubMed  Google Scholar 

  23. Wang W et al (2011) Imaging lung microstructure in mice with hyperpolarized 3He diffusion MRI. Magn Reson Med 65(3):620–626

    PubMed  Google Scholar 

  24. Caught by surprise: causes and consequences of the Helium-3 supply crisis. Comm Sci Technol (2010)

    Google Scholar 

  25. Salhi Z et al (2012) Recycling of 3He from lung magnetic resonance imaging. Magn Reson Med 67(6):1758–1763

    CAS  PubMed  Google Scholar 

  26. Albert MS et al (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486):199–201

    CAS  PubMed  Google Scholar 

  27. O’Halloran RL et al (2010) Helium-3 MR q-space imaging with radial acquisition and iterative highly constrained back-projection. Magn Reson Med 63(1):41–50

    PubMed Central  PubMed  Google Scholar 

  28. Peterson ET et al (2011) Measurement of lung airways in three dimensions using hyperpolarized helium-3 MRI. Phys Med Biol 56(10):3107–3122

    PubMed Central  PubMed  Google Scholar 

  29. Deppe MH, Wild JM (2012) Variable flip angle schedules in bSSFP imaging of hyperpolarized noble gases. Magn Reson Med 67(6):1656–1664

    PubMed  Google Scholar 

  30. Emami K et al (2013) Accelerated fractional ventilation imaging with hyperpolarized Gas MRI. Magn Reson Med 70(5):1353–1359

    Google Scholar 

  31. Johnson GA et al (2001) Registered (1)H and (3)He magnetic resonance microscopy of the lung. Magn Reson Med 45(3):365–370

    CAS  PubMed  Google Scholar 

  32. Driehuys B et al (2007) 3He MRI in mouse models of asthma. Magn Reson Med 58(5):893–900

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Deninger AJ et al (2002) Quantitative measurement of regional lung ventilation using 3He MRI. Magn Reson Med 48(2):223–232

    PubMed  Google Scholar 

  34. Chen BT, Brau AC, Johnson GA (2003) Measurement of regional lung function in rats using hyperpolarized 3helium dynamic MRI. Magn Reson Med 49(1):78–88

    PubMed  Google Scholar 

  35. Saam B et al (1999) Rapid imaging of hyperpolarized gas using EPI. Magn Reson Med 42(3):507–514

    CAS  PubMed  Google Scholar 

  36. Gierada DS et al (2000) Dynamic echo planar MR imaging of lung ventilation with hyperpolarized (3)He in normal subjects and patients with severe emphysema. NMR Biomed 13(4):176–181

    CAS  PubMed  Google Scholar 

  37. Wild JM et al (2003) Dynamic radial projection MRI of inhaled hyperpolarized 3He gas. Magn Reson Med 49(6):991–997

    PubMed  Google Scholar 

  38. van Beek EJ et al (2004) Functional MRI of the lung using hyperpolarized 3-helium gas. J Magn Reson Imaging 20(4):540–554

    PubMed  Google Scholar 

  39. Holmes JH et al (2009) Three-dimensional imaging of ventilation dynamics in asthmatics using multiecho projection acquisition with constrained reconstruction. Magn Reson Med 62(6):1543–1556

    PubMed Central  PubMed  Google Scholar 

  40. Holmes JH et al (2008) 3D hyperpolarized He-3 MRI of ventilation using a multi-echo projection acquisition. Magn Reson Med 59(5):1062–1071

    PubMed Central  PubMed  Google Scholar 

  41. Mistry NN et al (2010) Ventilation/perfusion imaging in a rat model of airway obstruction. Magn Reson Med 63(3):728–735

    PubMed Central  PubMed  Google Scholar 

  42. Salerno M et al (2001) Dynamic spiral MRI of pulmonary gas flow using hyperpolarized (3)He: preliminary studies in healthy and diseased lungs. Magn Reson Med 46(4):667–677

    CAS  PubMed  Google Scholar 

  43. Stephen MJ et al (2010) Quantitative assessment of lung ventilation and microstructure in an animal model of idiopathic pulmonary fibrosis using hyperpolarized gas MRI. Acad Radiol 17(11):1433–1443

    PubMed Central  PubMed  Google Scholar 

  44. Altes TA et al (2001) Hyperpolarized 3He MR lung ventilation imaging in asthmatics: preliminary findings. J Magn Reson Imaging 13(3):378–384

    CAS  PubMed  Google Scholar 

  45. de Lange EE et al (2009) Changes in regional airflow obstruction over time in the lungs of patients with asthma: evaluation with 3He MR imaging. Radiology 250(2):567–575

    PubMed  Google Scholar 

  46. Costella S et al (2012) Regional pulmonary response to a methacholine challenge using hyperpolarized (3)He magnetic resonance imaging. Respirology 17(8):1237–1246

    PubMed  Google Scholar 

  47. Kirby M et al (2011) Chronic obstructive pulmonary disease: quantification of bronchodilator effects by using hyperpolarized (3)He MR imaging. Radiology 261(1):283–292

    PubMed  Google Scholar 

  48. Kirby M et al (2012) Evaluating bronchodilator effects in chronic obstructive pulmonary disease using diffusion-weighted hyperpolarized helium-3 magnetic resonance imaging. J Appl Physiol 112(4):651–657

    CAS  PubMed  Google Scholar 

  49. McAdams HP et al (1999) Hyperpolarized 3He-enhanced MR imaging of lung transplant recipients: preliminary results. AJR Am J Roentgenol 173(4):955–959

    CAS  PubMed  Google Scholar 

  50. Gast KK et al (2002) MRI in lung transplant recipients using hyperpolarized 3He: comparison with CT. J Magn Reson Imaging 15(3):268–274

    PubMed  Google Scholar 

  51. Bannier E et al (2010) Hyperpolarized 3He MR for sensitive imaging of ventilation function and treatment efficiency in young cystic fibrosis patients with normal lung function. Radiology 255(1):225–232

    PubMed  Google Scholar 

  52. Cadman RV et al (2013) Pulmonary 3He magnetic resonance imaging of childhood asthma. J Allergy Clin Immunol 131(2):369–76.e1–5

    PubMed Central  PubMed  Google Scholar 

  53. Fain S et al (2010) Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: review of current and emerging translational methods and applications. J Magn Reson Imaging 32(6):1398–1408

    PubMed Central  PubMed  Google Scholar 

  54. Hong C et al (2005) Feasibility of combining MR perfusion, angiography, and 3He ventilation imaging for evaluation of lung function in a porcine model. Acad Radiol 12(2):202–209

    PubMed Central  PubMed  Google Scholar 

  55. Stejskal EO (1965) Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J Chem Phys 43(10):3597–3603

    Google Scholar 

  56. Owers-Bradley JR et al (2003) MR tagging of human lungs using hyperpolarized 3He gas. J Magn Reson Imaging 17(1):142–146

    PubMed  Google Scholar 

  57. Woods JC et al (2004) Magnetization tagging decay to measure long-range (3)He diffusion in healthy and emphysematous canine lungs. Magn Reson Med 51(5):1002–1008

    PubMed Central  PubMed  Google Scholar 

  58. Woods JC et al (2005) Long-range diffusion of hyperpolarized 3He in explanted normal and emphysematous human lungs via magnetization tagging. J Appl Physiol 99(5):1992–1997

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Conradi MS et al (2008) The role of collateral paths in long-range diffusion of 3He in lungs. Acad Radiol 15(6):675–682

    PubMed Central  PubMed  Google Scholar 

  60. Bartel SE et al (2008) Role of collateral paths in long-range diffusion in lungs. J Appl Physiol 104(5):1495–1503

    PubMed Central  PubMed  Google Scholar 

  61. Wang C et al (2008) Assessment of the lung microstructure in patients with asthma using hyperpolarized 3He diffusion MRI at two time scales: comparison with healthy subjects and patients with COPD. J Magn Reson Imaging 28(1):80–88

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Yablonskiy DA et al (2002) Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI. Proc Natl Acad Sci U S A 99(5):3111–3116

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Chen XJ et al (2000) Detection of emphysema in rat lungs by using magnetic resonance measurements of 3He diffusion. Proc Natl Acad Sci U S A 97(21):11478–11481

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Saam BT et al (2000) MR imaging of diffusion of (3)He gas in healthy and diseased lungs. Magn Reson Med 44(2):174–179

    CAS  PubMed  Google Scholar 

  66. Salerno M et al (2002) Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes–initial experience. Radiology 222(1):252–260

    PubMed  Google Scholar 

  67. West JB (1992) Pulmonary pathophysiology: the essentials, 4th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  68. Peces-Barba G et al (2003) Helium-3 MRI diffusion coefficient: correlation to morphometry in a model of mild emphysema. Eur Respir J 22(1):14–19

    CAS  PubMed  Google Scholar 

  69. Mata JF et al (2007) Evaluation of emphysema severity and progression in a rabbit model: comparison of hyperpolarized 3He and 129Xe diffusion MRI with lung morphometry. J Appl Physiol 102(3):1273–1280

    PubMed  Google Scholar 

  70. Gierada DS et al (2009) Effects of diffusion time on short-range hyperpolarized (3)He diffusivity measurements in emphysema. J Magn Reson Imaging 30(4):801–808

    PubMed Central  PubMed  Google Scholar 

  71. Woods JC et al (2006) Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn Reson Med 56(6):1293–1300

    PubMed Central  PubMed  Google Scholar 

  72. Waters B, Owers-Bradley J, Silverman M (2006) Acinar structure in symptom-free adults by Helium-3 magnetic resonance. Am J Respir Crit Care Med 173(8):847–851

    PubMed  Google Scholar 

  73. Fain SB et al (2005) Detection of age-dependent changes in healthy adult lungs with diffusion-weighted 3He MRI. Acad Radiol 12(11):1385–1393

    PubMed  Google Scholar 

  74. Altes TA et al (2006) Assessment of lung development using hyperpolarized helium-3 diffusion MR imaging. J Magn Reson Imaging 24(6):1277–1283

    PubMed  Google Scholar 

  75. Mugler JP et al (2004) The apparent diffusion coefficient of Xe-129 in the lung: preliminary human results. In: Proceedings of the ISMRM 12th annual scientific meeting & exhibition, Kyoto, 2004

    Google Scholar 

  76. Sindile A et al (2007) Human pulmonary diffusion weighted imaging at 0.2T with hyperpolarized 129Xe. In: Proceedings of the 15th annual ISMRM meeting at the Joint Annual Meeting ISMRM-ESMRMB, Berlin, 2007

    Google Scholar 

  77. Kaushik SS et al (2011) Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. Magn Reson Med 65(4):1154–1165

    PubMed Central  PubMed  Google Scholar 

  78. Kirby M et al (2012) Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 265(2):600–610

    PubMed  Google Scholar 

  79. Driehuys B et al (2012) Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology 262(1):279–289

    PubMed Central  PubMed  Google Scholar 

  80. Boudreau M, Xu X, Santyr GE (2013) Measurement of 129Xe gas apparent diffusion coefficient anisotropy in an elastase-instilled rat model of emphysema. Magn Reson Med 69(1):211–220

    CAS  PubMed  Google Scholar 

  81. Haefeli-Bleuer B, Weibel ER (1988) Morphometry of the human pulmonary acinus. Anat Rec 220(4):401–414

    CAS  PubMed  Google Scholar 

  82. Mercer RR, Laco JM, Crapo JD (1987) Three-dimensional reconstruction of alveoli in the rat lung for pressure-volume relationships. J Appl Physiol 62(4):1480–1487

    CAS  PubMed  Google Scholar 

  83. Sukstanskii AL, Yablonskiy DA (2008) In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background. J Magn Reson 190(2):200–210

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sukstanskii AL, Conradi MS, Yablonskiy DA (2010) (3)He lung morphometry technique: accuracy analysis and pulse sequence optimization. J Magn Reson 207(2):234–241

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Sukstanskii AL, Yablonskiy DA (2012) Lung morphometry with hyperpolarized 129Xe: theoretical background. Magn Reson Med 67(3):856–866

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Mair RW et al (1998) Pulsed-field-gradient measurements of time-dependent gas diffusion. J Magn Reson 135(2):478–486

    CAS  PubMed  Google Scholar 

  87. Mair RW et al (1999) Probing porous media with gas diffusion NMR. Phys Rev Lett 83(16):3324–3327

    CAS  PubMed  Google Scholar 

  88. Fichele S et al (2004) Finite-difference simulations of 3He diffusion in 3D alveolar ducts: comparison with the “cylinder model”. Magn Reson Med 52(4):917–920

    PubMed  Google Scholar 

  89. Kitaoka H, Tamura S, Takaki R (2000) A three-dimensional model of the human pulmonary acinus. J Appl Physiol 88(6):2260–2268

    CAS  PubMed  Google Scholar 

  90. Grebenkov DS (2007) Residence times and other functionals of reflected Brownian motion. Phys Rev E Stat Nonlin Soft Matter Phys 76(4 Pt 1):041139

    CAS  PubMed  Google Scholar 

  91. Verbanck S, Paiva M (1990) Model simulations of gas mixing and ventilation distribution in the human lung. J Appl Physiol 69(6):2269–2279

    CAS  PubMed  Google Scholar 

  92. Verbanck S, Paiva M (2007) Simulation of the apparent diffusion of helium-3 in the human acinus. J Appl Physiol 103(1):249–254

    PubMed  Google Scholar 

  93. Perez-Sanchez JM, Rodriguez I, Ruiz-Cabello J (2009) Random walk simulation of the MRI apparent diffusion coefficient in a geometrical model of the acinar tree. Biophys J 97(2):656–664

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Conradi MS et al (2005) 3He diffusion MRI of the lung. Acad Radiol 12(11):1406–1413

    PubMed Central  PubMed  Google Scholar 

  95. Miller GW et al (2007) Simulations of short-time diffusivity in lung airspaces and implications for S/V measurements using hyperpolarized-gas MRI. IEEE Trans Med Imaging 26(11):1456–1463

    PubMed  Google Scholar 

  96. Tsuda A et al (2008) Finite element 3D reconstruction of the pulmonary acinus imaged by synchrotron X-ray tomography. J Appl Physiol 105(3):964–976

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Burrowes KS, Tawhai MH, Hunter PJ (2004) Modeling RBC and neutrophil distribution through an anatomically based pulmonary capillary network. Ann Biomed Eng 32(4):585–595

    PubMed  Google Scholar 

  98. Plotkowiak M et al (2009) Relationship between structural changes and hyperpolarized gas magnetic resonance imaging in chronic obstructive pulmonary disease using computational simulations with realistic alveolar geometry. Philos Transact A Math Phys Eng Sci 367(1896):2347–2369

    Google Scholar 

  99. Quirk JD et al (2011) In vivo detection of acinar microstructural changes in early emphysema with (3)He lung morphometry. Radiology 260(3):866–874

    PubMed Central  PubMed  Google Scholar 

  100. Ruppert K (2012) Lung morphometry using hyperpolarized Xenon-129: preliminary experience. In: Proceedings of the ISMRM 20th annual meeting & exhibition, Melbourne, 2012

    Google Scholar 

  101. Tanoli TS et al (2007) In vivo lung morphometry with hyperpolarized 3He diffusion MRI in canines with induced emphysema: disease progression and comparison with computed tomography. J Appl Physiol 102(1):477–484

    PubMed Central  PubMed  Google Scholar 

  102. Osmanagic E et al (2010) Quantitative assessment of lung microstructure in healthy mice using an MR-based 3He lung morphometry technique. J Appl Physiol 109(6):1592–1599

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Jacob RE, Laicher G, Minard KR (2007) 3D MRI of non-Gaussian (3)He gas diffusion in the rat lung. J Magn Reson 188(2):357–366

    CAS  PubMed  Google Scholar 

  104. Xu X et al (2012) Mapping of (3) He apparent diffusion coefficient anisotropy at sub-millisecond diffusion times in an elastase-instilled rat model of emphysema. Magn Reson Med 67(4):1146–1153

    PubMed  Google Scholar 

  105. Voswinckel R et al (2004) Characterisation of post-pneumonectomy lung growth in adult mice. Eur Respir J 24(4):524–532

    CAS  PubMed  Google Scholar 

  106. Soutiere SE, Mitzner W (2004) On defining total lung capacity in the mouse. J Appl Physiol 96(5):1658–1664

    PubMed  Google Scholar 

  107. Fehrenbach H (2008) Commentaries on viewpoint: use of mean airspace chord length to assess emphysema. What does Lm tell us about lung pathology? J Appl Physiol 105(6):1984–1985; author reply 1986–7

    PubMed  Google Scholar 

  108. Knudsen L et al (2007) Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice. Respir Res 8:70

    PubMed Central  PubMed  Google Scholar 

  109. Mitzner W, Fallica J, Bishai J (2008) Anisotropic nature of mouse lung parenchyma. Ann Biomed Eng 36(12):2111–2120

    PubMed  Google Scholar 

  110. Knudsen L et al (2010) Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach. J Appl Physiol 108(2):412–421

    PubMed  Google Scholar 

  111. Lee J et al (2009) Lung alveolar integrity is compromised by telomere shortening in telomerase-null mice. Am J Physiol Lung Cell Mol Physiol 296(1):L57–L70

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Knust J et al (2009) Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec (Hoboken) 292(1):113–122

    Google Scholar 

  113. Kang MJ et al (2008) Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J Clin Invest 118(8):2771–2784

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Hajari AJ et al (2012) Morphometric changes in the human pulmonary acinus during inflation. J Appl Physiol 112(6):937–943

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Weibel ER (1963) Morphometry of the human lung. Springer, Berlin/Göttingen/Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Woods PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Woods, J.C., Yablonskiy, D.A., Conradi, M.S. (2014). Function and Microstructure by Hyperpolarized Gas MRI. In: Aliverti, A., Pedotti, A. (eds) Mechanics of Breathing. Springer, Milano. https://doi.org/10.1007/978-88-470-5647-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5647-3_17

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5646-6

  • Online ISBN: 978-88-470-5647-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics