Skip to main content

Computed Tomography (CT)–Based Analysis of Regional Lung Ventilation

  • Chapter
  • First Online:
Mechanics of Breathing

Abstract

Classical studies on regional ventilation with lobar spirometry [1, 2] and radioactive gases [3, 4] demonstrated regional differences in the distribution of ventilation, preferentially toward the lower lung zones. The first quantitative results are reported by West and Dollery [3], measuring the removal rate of oxygen15-labeled carbon dioxide after a single breath of the radioactive gas by external counting, and by Ball et al. [4], who measured regional ventilation by xenon scintigraphy by relating the lung count rate after a single breath to that after isotope equilibration throughout the lung. These preliminary findings have demonstrated that the lower portion of the lung is better ventilated and receives a much greater fraction of the total pulmonary blood flow and that the middle and lower portions of the lung are better ventilated on the left than on the right during deep inspiration. Subsequent works from Milic-Emili and coworkers [5, 6] attributed this behavior to the combined effect of the gradient of pleural pressure and the static volume-pressure relation of the lung. They have demonstrated that there is a vertical gradient of pleural pressure which causes nondependent portion of the lung to be relatively more expanded than the dependent. Moreover, these more distended units at the top of the lung are on a flatter part of their pressure-volume curve than the smaller units at the bottom; thus, equal pressure increments produce smaller volume increments at the top than at the bottom of the lung (Fig. 15.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin CJ, Young AC (1956) Lobar ventilation in man. Am Rev Tuberc 73(3):330

    CAS  PubMed  Google Scholar 

  2. Mattson SB, Carlens E (1955) Lobar ventilation and oxygen uptake in man; influence of body position. J Thorac Surg 30(6):676

    CAS  PubMed  Google Scholar 

  3. West JB, Dollery CT (1960) Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive CO2. J Appl Physiol 15(3):405–410

    CAS  PubMed  Google Scholar 

  4. Ball WC, Stewart PB, Newsham LGS, Bates DV (1962) Regional pulmonary function studied with xenon133. J Clin Invest 41(3):519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Milic-Emili J, Henderson JA, Dolovich MB et al (1966) Regional distribution of inspired gas in the lung. J Appl Physiol 21:749–759

    CAS  PubMed  Google Scholar 

  6. Bryan AC, Milic-Emili J, Pengelly D (1966) Effect of gravity on the distribution of pulmonary ventilation. J Appl Physiol 21:778–784

    CAS  PubMed  Google Scholar 

  7. Webb RW, Muller N, Naidich DP (2009) High-resolution CT of the lung, 4th edn. Lippincott Williams & Wilkins

    Google Scholar 

  8. Kachelriess M, Ulzheimer S, Kalender W (2000) ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27:1881–1902

    Article  CAS  PubMed  Google Scholar 

  9. Ohnesorge B, Flohr T, Becker C et al (2000) Cardiac imaging by means of electro—cardiographically gated multisection spiral CT—initial experience. Radiology 217:564–571

    Article  CAS  PubMed  Google Scholar 

  10. Flohr T (2013) CT systems. Curr Radiol Rep 1(1):52–63

    Article  Google Scholar 

  11. Flohr TG, Stierstorfer K, Ulzheimer S et al (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with zflying focal spot. Med Phys 32(8):2536–2547

    Article  CAS  PubMed  Google Scholar 

  12. Primak AN, Giraldo JC, Eusemann CD, Schmidt B, Kantor B, Fletcher JG, McCollough CH (2010) Dual-source dual-energy CT with additional tin filtration: dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol 195(5):1164–1174

    Article  PubMed Central  PubMed  Google Scholar 

  13. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249(2):671–681

    Article  PubMed  Google Scholar 

  14. International Commission on Radiological Protection (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37(2–4):1–332

    Google Scholar 

  15. Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361(9):849–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Committee to Assess Health Risks From Exposure to Low Levels of Ionizing, Radiation National Research Council of the National Academies (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. National Academies Press, Washington, DC

    Google Scholar 

  17. Groves AM, Owen KE, Courtney HM et al (2004) 16-Detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol 77:662–665

    Article  CAS  PubMed  Google Scholar 

  18. McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents – topics in CT: radiation dose in CT. Radiographics 22:1541–1553

    Article  PubMed  Google Scholar 

  19. Brenner DJ (2006) It is time to retire the computed tomography dose index (CTDI) for CT quality assurance and dose optimization. Med Phys 33:1189–1191

    Article  PubMed  Google Scholar 

  20. Paterson A, Frush DP, Donnelly LF (2001) Helical CT of the body: are settings adjusted for pediatric patients? AJR Am J Roentgenol 176:297–301

    Article  CAS  PubMed  Google Scholar 

  21. Kalender WA (2011) Computed tomography. Wiley, New York

    Google Scholar 

  22. Gur D, Drayer BP, Borovetz HS et al (1979) Dynamic computed tomography of the lung: regional ventilation measurements. J Comput Assist Tomogr 3:749–753

    Article  CAS  PubMed  Google Scholar 

  23. Tajik JK, Tran BQ, Hoffman EA (1996) Xenon enhanced CT imaging of local pulmonary ventilation. Proc SPIE 2709:40–54

    Article  Google Scholar 

  24. Marcucci C, Nyhan D, Simon BA (2001) Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J Appl Physiol 90:421–430

    Article  CAS  PubMed  Google Scholar 

  25. Kreck TC, Krueger MA, Altemeier WA et al (2001) Determination of regional ventilation and perfusion in the lung using xenon and computed tomography. J Appl Physiol 91(4):1741–1749

    CAS  PubMed  Google Scholar 

  26. Chon D, Simon BA, Beck KC et al (2005) Differences in regional wash-in and wash-out time constants for xenon-CT ventilation studies. Respir Physiol Neurobiol 148(1–2):65–83

    Article  PubMed  Google Scholar 

  27. Chae EJ, Seo JB, Goo HW, Kim N, Song KS et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248(2):615–624

    Article  PubMed  Google Scholar 

  28. Chae EJ, Seo JB, Lee J et al (2010) Xenon ventilation imaging using dual-energy computed tomography in asthmatics: initial experience. Invest Radiol 45(6):354–361

    PubMed  Google Scholar 

  29. Park EA, Goo JM, Park SJ et al (2010) Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique. Radiology 256(3):985–997

    Article  PubMed  Google Scholar 

  30. Thieme SF, Hoegl S, Nikolaou K et al (2010) Pulmonary ventilation and perfusion imaging with dual-energy CT. Eur Radiol 20(12):2882–2889

    Article  PubMed  Google Scholar 

  31. Simon BA (2005) Regional ventilation and lung mechanics using X-ray CT. Acad Radiol 12(11):1414–1422

    Article  PubMed  Google Scholar 

  32. Lachmann B, Armbruster S, Schairer W et al (1990) Safety and efficacy of xenon in routine use as an inhalational anaesthetic. Lancet 335:1413–1415

    Article  CAS  PubMed  Google Scholar 

  33. Hoag JB, Fuld M, Brown RH, Simon BA (2007) Recirculation of inhaled xenon does not alter lung CT density. Acad Radiol 14(1):81–84

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gattinoni L, Mascheroni D, Torresin A et al (1986) Morphological response to positive end-expiratory pressure in acute respiratory failure: computerized tomography study. Intensive Care Med 12:137–142

    Article  CAS  PubMed  Google Scholar 

  35. Gattinoni L, Pesenti A, Torresin A et al (1986) Adult respiratory distress syndrome profiles by computed tomography. J Thorac Imaging 1:25–30

    Article  CAS  PubMed  Google Scholar 

  36. Gattinoni L, Pesenti A, Bombino M et al (1988) Relationships between lung computed tomographic density, gas exchange and PEEP in acute respiratory failure. Anesthesiology 69:824–832

    Article  CAS  PubMed  Google Scholar 

  37. Gattinoni L, Pelosi P, Pesenti A, Brazzi L, Vitale G, Moretto A, Crespi A, Tagliabue M (1991) CT scan in ARDS: clinical and physiopathological insights. Acta Anasthesiol Scand 95:87–94

    Article  CAS  Google Scholar 

  38. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736

    Article  CAS  PubMed  Google Scholar 

  39. Pelosi P, Crotti S, Brazzi L, Gattinoni L (1996) Computed tomography in adult respiratory distress syndrome: what has it taught us? Eur Respir J 9(5):1055–1062

    Article  CAS  PubMed  Google Scholar 

  40. Dougherty L, Asmuth JC, Gefter WB (2003) Alignment of CT lung volumes with an optical flow method. Acad Radiol 10:249–254

    Article  PubMed  Google Scholar 

  41. Dougherty L, Torigian DA, Affusso JD et al (2006) Use of an optical flow method for the analysis of serial CT lung images. Acad Radiol 13:14–23

    Article  PubMed  Google Scholar 

  42. Simon BA (2000) Non-invasive imaging of regional lung function using x-ray computed tomography. J Clin Monit Comput 16:433–442

    Article  CAS  PubMed  Google Scholar 

  43. Guerrero T, Sanders K, Noyola-Martinez J, Castillo E, Zhang Y, Thapia R, Guerra R, BorgheroY KR (2005) Quantification of regional ventilation from treatment planning CT. Int J Radiat Oncol Biol Phys 62:630–634

    Article  PubMed  Google Scholar 

  44. Guerrero T, Sanders K, Castillo E et al (2006) Dynamic ventilation imaging from four-dimensional computed tomography. Phys Med Biol 51:777–791

    Article  PubMed  Google Scholar 

  45. Castillo R, Castillo E, Martinez J et al (2010) Ventilation from four-dimensional computed tomography: density versus jacobian methods. Phys Med Biol 55:4661–4685

    Article  PubMed  Google Scholar 

  46. Yamamoto T, Kabus S, Klinder T et al (2011) Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions. Phys Med Biol 56:2279–2298

    Article  PubMed  Google Scholar 

  47. Yaremko BP, Guerrero T, Noyola-Martinez J et al (2007) Reduction of normal lung irradiation in locally advanced non-small-cell lung cancer patients, using ventilation images for functional avoidance. Int J Radiat Oncol Biol Phys 68:562–571

    Article  PubMed Central  PubMed  Google Scholar 

  48. Vinogradskiy YY, Castillo R, Castillo E, Chandler A, Martel MK, Guerrero T (2012) Use of weekly 4DCT-based ventilation maps to quantify changes in lung function for patients undergoing radiation therapy. Med Phys 39(1):289–298

    Article  PubMed  Google Scholar 

  49. Fuld MK, Easley RB, Saba OI, Chon D, Reinhardt JM, Hoffman EA, Simon BA (2008) CT-measured regional specific volume change reflects regional ventilation in supine sheep. J Appl Physiol 104(4):1177–1184

    Article  PubMed  Google Scholar 

  50. Hogg JC, Nepszy S (1969) Regional lung volume and pleural pressure gradient estimated from lung density in dogs. J Appl Physiol 27(2):198–203

    CAS  PubMed  Google Scholar 

  51. Coxson HO, Mayo JR, Behzad H, Moore BJ, Verburgt LM, Staples CA, Paré PD, Hogg JC (1995) Measurement of lung expansion with computed tomography and comparison with quantitative histology. J Appl Physiol 79(5):1525–1530

    CAS  PubMed  Google Scholar 

  52. Salito C, Aliverti A, Gierada DS, Deslée G, Pierce RA, Macklem PT, Woods JC (2009) Quantification of trapped gas with CT and 3 He MR imaging in a porcine model of isolated airway obstruction. Radiology 253(2):380–389

    Article  PubMed Central  PubMed  Google Scholar 

  53. Hedlund LW, Vock P, Effmann EL (1983) Evaluating lung density by computed tomography. Semin Respir Crit Care Med 5:76–87

    Article  Google Scholar 

  54. Coxson HO, Rogers RM, Whittall KP, D’yachkova Y, Paré PD, Sciurba FC, Hogg JC (1999) A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med 159(3):851–856

    Article  CAS  PubMed  Google Scholar 

  55. Salito C, Woods JC, Aliverti A (2011) Influence of CT reconstruction settings on extremely low attenuation values for specific gas volume calculation in severe emphysema. Acad Radiol 18(10):1277–1284

    Article  PubMed Central  PubMed  Google Scholar 

  56. Aliverti A, Pennati F, Salito C, Woods JC (2013) Regional lung function and heterogeneity of specific gas volume in healthy and emphysematous subjects. Eur Respir J 41(5):1179–1188

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Aliverti PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Aliverti, A., Pennati, F., Salito, C. (2014). Computed Tomography (CT)–Based Analysis of Regional Lung Ventilation. In: Aliverti, A., Pedotti, A. (eds) Mechanics of Breathing. Springer, Milano. https://doi.org/10.1007/978-88-470-5647-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5647-3_15

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5646-6

  • Online ISBN: 978-88-470-5647-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics