Skip to main content

Abstract

The molecular events involved in the differentiation and function of bone cells have not been clarified for a long time because of the lack of suitable in vitro models to investigate bone cell biology. Over the past two decades, several novel approaches have been developed and adopted to investigate the biological bases of the differentiation processes of bone cells: osteoblasts, osteocytes, and osteoclasts. In the present chapter, we would like to update recent progress in the elucidation of the molecular mechanism of bone cells. The differentiation of osteoblasts from mesenchymal progenitors requires the activity of specific transcription factors such as Runx2 and Osterix, expressions of which are modulated by secreted molecules belonging to the Wnt family of glycoproteins. Differentiated osteoblasts, at the end of the bone formation phase, can become embedded in bone as osteocytes, cells enriched in dendritic processes that express specific markers as E11/gp38, SOST, DMP-1, PHEX, MEPE, and FGF-23. Osteocytes are important modulators of the bone remodeling process, as demonstrated by their ability to influence mineral homeostasis and control matrix mineralization as well as bone resorption through the secretion of the osteoclastogenic cytokine RANKL. Moreover, osteoclast differentiation from monocyte–macrophage lineage is tightly controlled by the RANK/RANKL/OPG system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackie EJ (2003) Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol 3:1301–1305

    Article  Google Scholar 

  2. Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption-a hypothesis. Calcif Tissue Int 33:349–351

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi N, Akatsu T, Udagawa N et al (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinol 123:2600–2602

    Article  CAS  Google Scholar 

  5. Teti A, Grano M, Colucci S et al (1991) Osteoblast-osteoclast relationships in bone resorption: osteoblasts enhance osteoclast activity in a serum-free co-culture system. Biochem Biophys Res Commun 179(1):634–640

    Article  CAS  PubMed  Google Scholar 

  6. Karsenty G, Kronenberg HM, Settembre C et al (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648

    Article  CAS  PubMed  Google Scholar 

  7. Komori T, Yagi H, Nomura S et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  CAS  PubMed  Google Scholar 

  8. Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  CAS  PubMed  Google Scholar 

  9. Lian JB, Javed A, Zaidi SK et al (2004) Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 14(1–2):1–41

    Article  CAS  PubMed  Google Scholar 

  10. Nakashima K, Zhou X, Kunkel G et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Matsuda K, Bialek P et al (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry Syndrome. Cell 117:387–398

    Article  CAS  PubMed  Google Scholar 

  12. Wagner EF (2002) Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis 61(2):ii40–ii42

    Google Scholar 

  13. Kenner L, Hoebertz A, Beil FT et al (2004) Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol 164:613–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kawamata A, Izu Y, Yokoyama H et al (2008) JunD suppresses bone formation and contributes to low bone mass induced by estrogen depletion. J Cell Biochem 103:1037–1045

    Article  CAS  PubMed  Google Scholar 

  15. Janssens K, ten Diike P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774

    Article  CAS  PubMed  Google Scholar 

  16. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    Article  CAS  PubMed  Google Scholar 

  17. Gazzerro E, Canalis E (2006) Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 7:51–65

    Article  CAS  PubMed  Google Scholar 

  18. Mishina Y, Starbuck MW, Gentile MA et al (2004) Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem 279:27560–27566

    Article  CAS  PubMed  Google Scholar 

  19. Kokabu S, Gamer L, Cox K et al (2012) BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b. Mol Endocrinol 26(1):87–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bennett CN, Longo KA, Wright WS et al (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 102(9):3324–3329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hoeppner LH, Secreto FJ, Westendorf JJ (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets13(4):485–496

    Google Scholar 

  22. Boyden LM, Mao J, Belsky J et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521

    Article  CAS  PubMed  Google Scholar 

  23. Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    Article  CAS  PubMed  Google Scholar 

  24. Ai M, Holmen SL, Van Hul W et al (2005) Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol Cell Biol 25:4946–4955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ellies DL, Viviano B, McCarthy J et al (2006) Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171 V to modulate Wnt activity. J Bone Miner Res 21:1738–1749

    Article  CAS  PubMed  Google Scholar 

  26. Balemans W, Ebeling M, Patel N et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543

    Article  CAS  PubMed  Google Scholar 

  27. Balemans W, Patel N, Ebeling M et al (2002) Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Gene 39:91–97

    Article  CAS  Google Scholar 

  28. Tu X, Joeng KS, Nakayama KI et al (2007) Noncanonical Wnt signaling through G protein-linked PKCδ activation promotes bone formation. Dev Cell 12:113–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Takada I, Mihara M, Suzawa M et al (2007) A histone lysine methyltransferase activated by non-canonical wnt signalling suppresses PPAR-γ transactivation. Nature Cell Bio 9:1273–1285

    Article  CAS  Google Scholar 

  30. Montero A, Okada Y, Tomita M et al (2000) Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 105:1085–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Liu Z, Lavine KJ, Hung IH et al (2007) FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol 302:80–91

    Article  CAS  PubMed  Google Scholar 

  32. Parfitt AM (2007) Skeletal heterogeneity and the purposes of bone remodeling: implications for the understanding of osteoporosis. In: Marcus R, Feldman D, Nelson DA, Rosen CJ (eds) Osteoporosis, Vol 1. Academic Press, Burlington, pp 72–74

    Google Scholar 

  33. Manolagas SC (2006) Perspective: Choreography from the tomb: an emerging role of dying osteocytes in the purposeful, and perhaps not so purposeful, targeting of bone remodeling. BoneKey Osteovision 3:5–14

    Article  Google Scholar 

  34. Bonewald LF (2006) Mechanosensation and transduction in osteocytes. Bonekey Osteovision 3:7–15

    Article  PubMed Central  PubMed  Google Scholar 

  35. Zambonin Zallone A, Teti A, Primavera MV et al (1983) Mature osteocytes behaviour in a repletion period: the occurrence of osteoplastic activity. Basic Appl Histochem 27:191–204

    CAS  PubMed  Google Scholar 

  36. Qing H, Dusevich V, Wysolmerski JJ et al (2009) Osteocyte perilacunar remodeling is regulated hormonally, but not by mechanical unloading. J Bone & Miner Res. http://www.asbmr.org/Itinerary/PresentationDetail.aspx?id=4370b547-b289-43ae-a166-815f3783dacd

  37. Kneissel M (2009) The promise of sclerostin inhibition for the treatment of osteoporosis. IBMS BoneKey 6:259–264

    Article  Google Scholar 

  38. Xiong J, Onal M, Jilka RL et al (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235–1241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    CAS  PubMed  Google Scholar 

  40. Karsdal MA, Andersen TA, Bonewald L et al (2004) Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes: MT1-MMP maintains osteocyte viability. DNA Cell Biol 23:155–165

    Article  CAS  PubMed  Google Scholar 

  41. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Balemans W, Cleiren E, Siebers U et al (2005) A generalized skeletal hyperostosis in two siblings caused by a novel mutation in the SOST gene. Bone 36:943–947

    Article  CAS  PubMed  Google Scholar 

  43. Wesseling-Perry K (2010) FGF-23 in bone biology. Pediatric Nephrol 25:603–608

    Google Scholar 

  44. Okada S, Yoshida S, Ashrafi SH, Schraufnagel DE (2002) The canalicular structure of compact bone in the rat at different ages. Microsc Microanal 8:104–115

    Article  CAS  PubMed  Google Scholar 

  45. Suda T, Takahashi N, Udagawa N et al (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  CAS  PubMed  Google Scholar 

  46. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  47. Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170:427–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hamilton JA (1997) CSF-1 signal transduction. J Leukoc Biol 62:145–155

    CAS  PubMed  Google Scholar 

  49. Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  50. Tsuda E, Goto M, Mochizuki S et al (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234:137–142

    Article  CAS  PubMed  Google Scholar 

  51. Yasuda H, Shima N, Nakagawa N et al (1998) Identification of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG inhibits osteoclastogenesis in vitro. Endocrinology 139:1329–1337

    PubMed  Google Scholar 

  52. Mizuno A, Amizuka N, Irie K et al (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 237:610–615

    Article  Google Scholar 

  53. Kong YY, Yoshida H, Sarosi I et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  54. Wong BR, Rho J, Arron J et al (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272:25190–25194

    Article  CAS  PubMed  Google Scholar 

  55. Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  56. Dougall WC, Glaccum M, Charrier K et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Gohda J, Akiyama T, Koga T et al (2005) RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J 24:790–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Naito A, Azuma S, Tanaka S et al (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4:353–362

    Article  CAS  PubMed  Google Scholar 

  59. Franzoso G, Carlson L, Xing L et al (1997) Requirement for NF-_B in osteoclast and B-cell development. Genes Dev 11:3482–3496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Takayanagi H, Kim S, Koga T et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling for terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  CAS  PubMed  Google Scholar 

  61. Hogan PG, Chen L, Nardone J et al (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17(18):2205–2232

    Article  CAS  PubMed  Google Scholar 

  62. Yip KH, Zheng MH, Steer JH et al (2005) Thapsigargin modulates osteoclastogenesis through the regulation of RANKL-induced signaling pathways and reactive oxygen species production. J Bone Miner Res 20(8):1462–1471

    Article  CAS  PubMed  Google Scholar 

  63. Berridge G, Cramer R, Galione A et al (2002) Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid-adenine dinucleotide phosphate via a 2′-specific Ca2+-dependent phosphatase. Biochem J. 365(Pt 1):295–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kim N, Takami M, Rho J et al (2002) A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 195:201–209

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Koga T, Inui M, Inoue K et al (2004) Costimulatory signals mediated by the ITAMmotif cooperate with RANKL for bone homeostasis. Nature 428:758–763

    Article  CAS  PubMed  Google Scholar 

  66. Zou W, Hakim I, Tschoep K et al (2001) Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem 83:70–83

    Article  CAS  PubMed  Google Scholar 

  67. Lam J, Takeshita S, Barker JE et al (2000) TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Kobayashi K, Takahashi N, Jimi E et al (2000) Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Yamashita T, Yao Z, Li F et al (2007) NF-κB p50 and p52 regulate receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 282:18245–18253

    Article  CAS  PubMed  Google Scholar 

  70. Yagi M, Miyamoto T, Sawatani Y et al (2005) DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hartgers FC, Vissers JL, Looman MW et al (2000) DC-STAMP, a novel multimembrane-spanning molecule preferentially expressed by dendritic cells. Eur J Immunol 30:3585–3590

    Article  CAS  PubMed  Google Scholar 

  72. Kukita T, Wada N, Kukita A et al (2004) RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med 200:941–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Iwasaki R, Ninomiya K, Miyamoto K et al (2008) Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity. Biochem Biophys Res Commun 377:899–904

    Article  CAS  PubMed  Google Scholar 

  74. Kim K, Lee SH, Ha Kim J et al (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocri-nol 22:176–185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Oranger, A., Colaianni, G., Grano, M. (2014). Bone Cells. In: Albanese, C.V., Faletti, C. (eds) Imaging of Prosthetic Joints. Springer, Milano. https://doi.org/10.1007/978-88-470-5483-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5483-7_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5482-0

  • Online ISBN: 978-88-470-5483-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics