Advertisement

Pancreas

  • Achille Mileto
  • Daniele Marin
  • Rendon C. NelsonEmail author
Chapter

Abstract

With the enhanced scan speed, high spatial resolution, and thin collimation width, multi-detector CT (MDCT) represents the imaging modality of choice for patients suspected of having a pancreatic malignancy. A contrast-enhanced biphasic protocol consisting of pancreatic parenchymal and portal venous phase acquisitions is optimal for accurate detection and staging of pancreatic tumors. Spectral MDCT has the potential for improved tissue characterization over standard single-energy CT and has specific applications for pancreatic imaging. Imaging at lower energies, creation of iodine-only images, and the availability of monochromatic imaging may provide a variety of advantages in focal pancreatic lesion detection.

Keywords

Pancreas Multi-detector CT Pancreatic adenocarcinoma Lesion detection Spectral imaging 

References

  1. 1.
    Paspulati RM (2005) Multidetector CT of the pancreas. Radiol Clin North Am 43:999–1020PubMedCrossRefGoogle Scholar
  2. 2.
    Lowenfels AB, Sullivan T, Fiorianti J, Maisonneuve P (2005) The epidemiology and impact of pancreatic diseases in the United States. Curr Gastroenterol Rep 7:90–95PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
  4. 4.
    Hruban RH, Maitra A, Kern SE, Goggins M (2007) Precursors to pancreatic cancer. Gastroenterol Clin North Am 36:831–849PubMedCrossRefGoogle Scholar
  5. 5.
    Megibow AJ (2010) Are we really closer to predicting the development of pancreatic cancer? Radiology 254:642–646PubMedCrossRefGoogle Scholar
  6. 6.
    Klapman J, Malafa MP (2008) Early detection of pancreatic cancer: why, who, and how to screen. Cancer Control 15:280–287PubMedGoogle Scholar
  7. 7.
    Canto MI, Goggins M, Hruban RH et al (2006) Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 4:766–778PubMedCrossRefGoogle Scholar
  8. 8.
    Bashir MR, Gupta RT (2012) MDCT evaluation of the pancreas: nuts and bolts. Radiol Clin North Am 50:365–377PubMedCrossRefGoogle Scholar
  9. 9.
    Prokesch RW, Chow LC, Beaulieu CF, Bammer R, Jeffrey RB (2002) Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs. Radiology 224:764–768PubMedCrossRefGoogle Scholar
  10. 10.
    Eaton SB Jr, Ferrucci JT Jr (eds) (1973) Radiology of the pancreas and duodenum. Saunders, PhiladelphiaGoogle Scholar
  11. 11.
    Haaga JR, Alfidi RJ, Zelch MG et al (1976) Computed tomography of the pancreas. Radiology 120:589–595PubMedGoogle Scholar
  12. 12.
    Stanley RJ, Sagel SS, Levitt RG (1977) Computed tomographic evaluation of the pancreas. Radiology 124:715–722PubMedGoogle Scholar
  13. 13.
    Gangi S, Fletcher JG, Nathan MA et al (2004) Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR Am J Roentgenol 182:897–903PubMedCrossRefGoogle Scholar
  14. 14.
    Hollett MD, Jorgensen MJ, Jeffrey RB (1995) Quantitative evaluation of pancreatic enhancement during dual-phase helical CT. Radiology 195:359–361PubMedGoogle Scholar
  15. 15.
    Tabuchi T, Itoh K, Ohshio G et al (1999) Tumor staging of pancreatic adenocarcinoma using early- and late-phase helical CT. AJR Am J Roentgenol 173:375–380PubMedCrossRefGoogle Scholar
  16. 16.
    Keogan MT, McDermott VG, Paulson EK et al (1997) Pancreatic malignancy: effect of dual-phase helical CT in tumor detection and vascular opacification. Radiology 205:513–518PubMedGoogle Scholar
  17. 17.
    Graf O, Boland GW, Warshaw AL, Fernandez-del Castillo C, Hahn PF, Mueller PR (1997) Arterial versus portal venous helical CT for revealing pancreatic adenocarcinoma: conspicuity of tumor and critical vascular anatomy. AJR Am J Roentgenol 169:119–123Google Scholar
  18. 18.
    Lu DS, Vedantham S, Krasny RM, Kadell B, Berger WL, Reber HA (1996) Two-phase helical CT for pancreatic tumors: pancreatic versus hepatic phase enhancement of tumor, pancreas, and vascular structures. Radiology 199:697–701PubMedGoogle Scholar
  19. 19.
    Tanaka S, Nakao M, Ioka T et al (2010) Slight dilatation of the main pancreatic duct and presence of pancreatic cysts as predictive signs of pancreatic cancer: a prospective study. Radiology 254:965–972PubMedCrossRefGoogle Scholar
  20. 20.
    Brennan DDD, Zamboni GA, Raptopoulos VD, Kruskal JB (2007) Comprehensive preoperative assessment of pancreatic adenocarcinoma with 64-section volumetric CT. Radiographics 27:1653–1666PubMedCrossRefGoogle Scholar
  21. 21.
    Beger HG, Rau B, Gansauge F et al (2003) Treatment of pancreatic cancer: challenge of the facts. World J Surg 27:1075–1084PubMedCrossRefGoogle Scholar
  22. 22.
    Ichikawa T, Ertuk SE, Sou H et al (2006) MDCT of pancreatic adenocarcinoma: optimal imaging phases and multiplanar reformatted imaging. AJR Am J Rentgenol 187:1513–1520CrossRefGoogle Scholar
  23. 23.
    Kondo H, Kanematsu M, Goshima S et al (2007) MDCT of the pancreas: optimizing scanning delay with a bolus tracking technique for pancreatic, peripancreatic vascular, and hepatic contrast enhancement. AJR Am J Rentgenol 188:751–756CrossRefGoogle Scholar
  24. 24.
    Freeny PC, Marks WM, Ryan JA, Traverso LW (1988) Pancreatic ductal adenocarcinoma: diagnosis and staging with dynamic CT. Radiology 166:125–133PubMedGoogle Scholar
  25. 25.
    Freeny PC (1989) Radiologic diagnosis and staging of pancreatic ductal adenocarcinoma. Radiol Clin North Am 27:121–128PubMedGoogle Scholar
  26. 26.
    Zeiss J, Coombs RJ, Bielke D (1990) CT presentation and staging accuracy of pancreatic adenocarcinoma. Int J Pancreatol 7:49–53PubMedGoogle Scholar
  27. 27.
    Dupuy DE, Costello P, Ecker CP (1992) Spiral CT of the pancreas. Radiology 183:815–818PubMedGoogle Scholar
  28. 28.
    Ichikawa T, Peterson MS, Federle MP et al (2000) Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology 216:163–171PubMedGoogle Scholar
  29. 29.
    Fletcher JG, Wiersema MJ, Farrell MA et al (2003) Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi-detector row CT. Radiology 229:81–90PubMedCrossRefGoogle Scholar
  30. 30.
    Choi BI, Chung MJ, Han JK, Han MC, Yoon YB (1997) Detection of pancreatic adenocarcinoma: relative value of arterial and late phases of spiral CT. Abdom Imaging 22:199–203PubMedCrossRefGoogle Scholar
  31. 31.
    Boland GW, O’Malley ME, Saez M, Fernandez-del-Castillo C, Warshaw AL, Mueller PR (1999) Pancreatic-phase versus portal vein-phase helical CT of the pancreas: optimal temporal window for evaluation of pancreatic adenocarcinoma. AJR Am J Roentgenol 172:605–608PubMedCrossRefGoogle Scholar
  32. 32.
    Nishiharu T, Yamashita Y, Ogata I et al (1998) Spiral CT of the pancreas. The value of small field-of-view targeted reconstruction. Acta Radiol 39:60–63PubMedGoogle Scholar
  33. 33.
    Horton KM, Fishman EK (2002) Multidetector CT angiography of pancreatic carcinoma: part 1, evaluation of arterial involvement. AJR Am J Roentgenol 178:827–831PubMedCrossRefGoogle Scholar
  34. 34.
    Horton KM, Fishman EK (2000) 3D CT angiography of the celiac and superior mesenteric arteries with multidetector CT data sets: preliminary observations. Abdom Imaging 25:523–525PubMedCrossRefGoogle Scholar
  35. 35.
    Novick SL, Fishman EK (1998) Three-dimensional CT angiography of pancreatic carcinoma: role in staging extent of disease. AJR Am J Roentgenol 170:139–143PubMedCrossRefGoogle Scholar
  36. 36.
    Lu DSK, Reber HA, Krasny RM, Kadell BM, Sayre J (1997) Local staging of pancreatic cancer: criteria for unresectability of major vessels as revealed by pancreatic-phase, thin-section helical CT. AJR Am J Roentgenol 168:1439–1443PubMedCrossRefGoogle Scholar
  37. 37.
    Horton KM, Fishman EK (2002) Multidetector CT angiography of pancreatic carcinoma: part 2, evaluation of venous involvement. AJR Am J Roentgenol 178:833–836PubMedCrossRefGoogle Scholar
  38. 38.
    Fukushima H, Itoh S, Takada A et al (2006) Diagnostic value of curved multiplanar reformatted images in multislice CT for the detection of resectable pancreatic ductal adenocarcinoma. Eur Radiol 16:1709–1718PubMedCrossRefGoogle Scholar
  39. 39.
    Hong KC, Freeny PC (1999) Pancreaticoduodenal arcades and dorsal pancreatic artery: comparison of CT angiography with three-dimensional volume rendering, maximum intensity projection, and shaded-surface display. AJR Am J Roentgenol 172:925–931PubMedCrossRefGoogle Scholar
  40. 40.
    Bluemke DA, Cameron JL, Hruban RH et al (1995) Potentially resectable pancreatic adenocarcinoma: spiral CT assessment with surgical and pathologic correlation. Radiology 197:381–385PubMedGoogle Scholar
  41. 41.
    Diehl SJ, Lehmann KJ, Sadick M et al (1998) Pancreatic cancer: value of dual-phase helical CT in assessing resectability. Radiology 206:373–378PubMedGoogle Scholar
  42. 42.
    Valls C, Andia E, Sanchez A et al (2002) Dual-phase helical CT of pancreatic adenocarcinoma: assessment of resectability before surgery. AJR Am J Roentgenol 178:821–826PubMedCrossRefGoogle Scholar
  43. 43.
    Roche CJ, Hughes ML, Garvey CJ et al (2003) CT and pathologic assessment of prospective nodal staging in patients with ductal adenocarcinoma of the head of the pancreas. AJR Am J Roentgenol 180:475–480PubMedCrossRefGoogle Scholar
  44. 44.
    Imbriaco M, Megibow AJ, Ragozzino A et al (2005) Value of the single-phase technique in MDCT assessment of pancreatic tumors. AJR Am J Roentgenol 184:1111–1117PubMedCrossRefGoogle Scholar
  45. 45.
    Imbriaco M, Megibow AJ, Camera L et al (2002) Dual-phase versus single-phase helical CT to detect and assess resectability of pancreatic carcinoma. AJR Am J Roentgenol 178:1473–1479PubMedCrossRefGoogle Scholar
  46. 46.
    Marin D, Nelson RC, Barnhart H et al (2010) Detection of pancreatic tumors, image quality, and radiation dose during the pancreatic parenchymal phase: effect of a low-tube-voltage, high-tube-current ct technique—preliminary results. Radiology 256:450–459PubMedCrossRefGoogle Scholar
  47. 47.
    Schindera ST, Nelson RC, Mukundan S Jr et al (2008) Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection—phantom study. Radiology 246:125–132PubMedCrossRefGoogle Scholar
  48. 48.
    Marin D, Nelson RC, Samei E et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection—initial clinical experience. Radiology 251:771–779PubMedCrossRefGoogle Scholar
  49. 49.
    Schindera ST, Diedrichsen L, Muller HC et al (2011) Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology 260:454–462PubMedCrossRefGoogle Scholar
  50. 50.
    Singh S, Kalra MK, Hsieh J et al (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383PubMedCrossRefGoogle Scholar
  51. 51.
    Marin D, Nelson RC, Schindera ST et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 254:145–153PubMedCrossRefGoogle Scholar
  52. 52.
    Macari M, Spieler B, Kim D (2010) Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR Am J Roentgenol 194:W27–W32PubMedCrossRefGoogle Scholar
  53. 53.
    Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517PubMedCrossRefGoogle Scholar
  54. 54.
    Wintersperger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341PubMedCrossRefGoogle Scholar
  55. 55.
    Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE (2013) Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol 68:148–154PubMedCrossRefGoogle Scholar
  56. 56.
    Heye T, Nelson RC, Ho LM, Marin D, Boll DT (2012) Dual-energy CT applications in the abdomen. AJR Am J Roentgenol 199:S64–S70PubMedCrossRefGoogle Scholar
  57. 57.
    Graser A, Johnson TRC, Chandarana H, Macari M (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23PubMedCrossRefGoogle Scholar
  58. 58.
    Chu AJ, Lee JM, Lee YJ, Moon SK, Han JK, Choi BI (2012) Dual-source, dual-energy multidetector CT for the evaluation of pancreatic tumours. Br J Radiol 85:e891–e898PubMedCrossRefGoogle Scholar
  59. 59.
    Mileto A, Mazziotti S, Gaeta M et al (2012) Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol 67:334–339PubMedCrossRefGoogle Scholar
  60. 60.
    Klauss M, Stillera W, Pahna G et al (2013) Dual-energy perfusion-CT of pancreatic adenocarcinoma. Eur J Radiol 82:208–214PubMedCrossRefGoogle Scholar
  61. 61.
    Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:W693–W700PubMedCrossRefGoogle Scholar
  62. 62.
    Yu L, Leng S, McCollough CH (2012) Dual-energy CT–based monochromatic imaging. AJR Am J Roentgenol 199:S9–S15PubMedCrossRefGoogle Scholar
  63. 63.
    Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31:1031–1046PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Achille Mileto
    • 1
    • 2
  • Daniele Marin
    • 2
  • Rendon C. Nelson
    • 2
    Email author
  1. 1.Department of Biomedical Sciences and Morphological and Functional ImagingUniversity of Messina, Policlinico “G. Martino”MessinaItaly
  2. 2.Department of RadiologyDuke University Medical CenterDurhamUSA

Personalised recommendations