Advertisement

CT Urography

  • Achille Mileto
  • Carmelo Sofia
  • Silvio Mazziotti
  • Alfredo Blandino
  • Emanuele Scribano
  • Giorgio AscentiEmail author
Chapter

Abstract

MDCT urography allows fast and high-resolution volumetric scanning of the urinary tract in a single comprehensive examination, termed “one-stop-shop modality,” offering several three-dimensional post-processing features including multi-planar reformations (MPR) and maximum intensity projection (MIP) images. In most centers, a three-phase CT urographic protocol, consisting of unenhanced, nephrographic, and excretory phases, is performed. An alternative is represented by the “split-bolus CT urography”: a combined nephrographic and pyelographic phase allows for a simultaneous assessment of the renal parenchyma in the nephrographic phase and the pelvicalyceal system in the excretory phase by acquisition of only a single CT scan. The advent of dual-energy CT represents a unique opportunity for CT urography to significantly reduce the radiation dose while ensuring high diagnostic performances. From a clinical point of view, the advantages of spectral-based iodine extraction with subsequent creation of virtual unenhanced images can be maximally exploited if a split-bolus CT urography injection/acquisition technique is carried out. The simultaneous nephrographic parenchymal contrast enhancement and urographic excretion allow the radiologist to detect urinary stones or parenchymal calcification on virtual unenhanced images, to characterize renal lesions by means of color-coded display of the iodine distribution in the scan field, and to identify urothelial lesions.

Keywords

Hematuria CT urography Split-bolus Dual-Energy CT Radiation dose 

References

  1. 1.
    Nolte-Ernsting C, Cowan N (2006) Understanding multislice CT urography techniques: many roads lead to Rome. Eur Radiol 16:2670–2686PubMedCrossRefGoogle Scholar
  2. 2.
    Chai RY, Saini S, Hahn PF, Mueller PR (2000) Comprehensive “one-stop” evaluation of patients with haematuria using multi-slice CT. Radiology 217:454–455Google Scholar
  3. 3.
    Van Der Molen AJ, Cowan NC, Mueller-Lisse UG et al (2008) CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol 18:4–17CrossRefGoogle Scholar
  4. 4.
    Amis ES (1999) Epitaph for the urogram. Radiology 213:639–640PubMedGoogle Scholar
  5. 5.
    Grossfeld GD, Litwin MS, Wolf JS et al (2001) Evaluation of asymptomatic microscopic hematuria in adults: the American Urological Association best practice policy–part II: patient evaluation, cytology, voided markers, imaging, cystoscopy, nephrology evaluation, and follow-up. Urology 57:604–610PubMedCrossRefGoogle Scholar
  6. 6.
    Joffe SA, Servaes S, Okon S et al (2003) Multi–detector row CT urography in the evaluation of hematuria. Radiographics 23:1441–1456PubMedCrossRefGoogle Scholar
  7. 7.
    Perlman ES, Rosenfield AT, Wexler JS et al (1996) CT urography in the evaluation of urinary tract disease. J Comput Assist Tomogr 20:620–626PubMedCrossRefGoogle Scholar
  8. 8.
    Caoili EM, Inampudi P, Cohan RH et al (2003) MDCTU of upper tract uroepithelial malignancy. AJR Am J Roentgenol 180:71CrossRefGoogle Scholar
  9. 9.
    Caoili EM, Cohan RH, Korobkin M et al (2002) Urinary tract abnormalities: initial experience with multi-detector row CT urography. Radiology 222:353–360PubMedCrossRefGoogle Scholar
  10. 10.
    McCarthy CL, Cowan NC (2002) Multidetector CT urography (MDCTU) for urothelial imaging. Radiology 225(Suppl):237Google Scholar
  11. 11.
    McTavish JD, Jinzaki M, Zou KH et al (2002) Multi-detector row CT urography: comparison of strategies for depicting the normal urinary collecting system. Radiology 225:783–790PubMedCrossRefGoogle Scholar
  12. 12.
    Tsili AC, Efremedis SC, Kalef-Ezra J et al (2007) Multidetector-row CT urography on a 16-row CT scanner in the evaluation of urothelial tumors. Eur Radiol 17:1046–1054PubMedCrossRefGoogle Scholar
  13. 13.
    Kemper J, Regier M, Stork A et al (2006) Improved visualization of the urinary tract in multidetector CT urography (MDCTU): analysis of individual acquisition delay and opacification using furosemide and low-dose test images. J Comput Assist Tomogr 30:751–757PubMedCrossRefGoogle Scholar
  14. 14.
    Girish G, Agarwal SK, Salim F et al (2003) Single-phase multislice CT urography: initial experience. Eur Radiol 13:147CrossRefGoogle Scholar
  15. 15.
    Caoili EM, Inampudi P, Cohan RH et al (2005) Optimization of multi- detector row CT urography: effect of compression, saline administration, and prolongation of acquisition delay. Radiology 235:116–123PubMedCrossRefGoogle Scholar
  16. 16.
    Chow LC, Sommer FG (2001) Multi-detector CT urography with abdominal compression and three-dimensional reconstruction. AJR 177:849–855PubMedCrossRefGoogle Scholar
  17. 17.
    Sudakoff GS, Dunn DP, Hellman RS et al (2006) Opacification of the genito- urinary collecting system during MDCT Urography with enhanced CT digital radiography: nonsaline versus saline bolus. AJR Am J Roentgenol 186:122–129PubMedCrossRefGoogle Scholar
  18. 18.
    Chow LC, Kwan SW, Olcott EW et al (2007) Split bolus MDCT urography with synchronous nephrographic and excretory phase enhancement. AJR Am J Roentgenol 189:314–322PubMedCrossRefGoogle Scholar
  19. 19.
    Korobkin M (2005) CT urography. Eur Radiol 15:s82–s84CrossRefGoogle Scholar
  20. 20.
    Bosniak MA (1991) The small (less than or equal to 3.0 cm) renal parenchymal tumor: detection, diagnosis, and controversies. Radiology 179:307–317PubMedGoogle Scholar
  21. 21.
    Hartman DS, Davis CJ, Johns T et al (1986) Cystic renal cell carcinoma. Urology 28:145–153PubMedCrossRefGoogle Scholar
  22. 22.
    Murad T, Komaiko W, Oyasu R et al (1991) Multilocular cystic renal cell carcinoma. Am J Clin Pathol 95:633–637PubMedGoogle Scholar
  23. 23.
    Bosniak MA (1996) Cystic renal masses: a reevaluation of the usefulness of the Bosniak Classification System (letter). Acad Radiol 3:981–984PubMedCrossRefGoogle Scholar
  24. 24.
    Silverman SG, Israel GM, Herts BR et al (2008) Management of the incidental renal mass. Radiology 249:16–31PubMedCrossRefGoogle Scholar
  25. 25.
    McGahan JP, Lamba R, Fisher J et al (2011) Is Segmental Enhancement Inversion on Enhanced Biphasic MDCT a Reliable Sign for the Noninvasive Diagnosis of Renal Oncocytomas? AJR Am J Roentgenol 197:W674–W679PubMedCrossRefGoogle Scholar
  26. 26.
    Millet I, Curros Doyon F, Hoa D et al (2011) Characterization of Small Solid Renal Lesions: can Benign and Malignant Tumors Be Differentiated With CT? AJR Am J Roentgenol 197:887–896PubMedCrossRefGoogle Scholar
  27. 27.
    Kemper J, Begemann PGC, Regier M et al (2005) Multislice-CT-urography (MSCTU): experimental evaluation of low-dose protocols. Eur Radiol 15:273Google Scholar
  28. 28.
    Kalra MK, Maher MM, Rizzo S et al (2004) Radiation exposure and projected risks with multidetector-row computed tomography scanning: clinical strategies and technologic developments for dose reduction. J Comput Assist Tomogr 28:S46–S49PubMedCrossRefGoogle Scholar
  29. 29.
    Greess H, Wolf H, Baum U et al (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10:391–394PubMedCrossRefGoogle Scholar
  30. 30.
    Vrtiska TJ, Hartman RP, Kofler JM et al (2009) Spatial resolution and radiation dose of a 64-MDCT scanner compared with published CT urography protocols. AJR 192:941–948PubMedCrossRefGoogle Scholar
  31. 31.
    McCollough CH, Bruesewitz MR, Vrtiska TJ et al (2001) Image quality and dose comparison among screen-film, computed, and CT scanned projection radiography: applications to CT urography. Radiology 221:395–403PubMedCrossRefGoogle Scholar
  32. 32.
    Shinagare AB, Sahni VA, Sadow CA et al (2011) Feasibility of low tube voltage excretory phase images during CT urography: assessment using a dual-energy CT scanner. AJR Am J Roentgenol 197:1146–1151PubMedCrossRefGoogle Scholar
  33. 33.
    Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517PubMedCrossRefGoogle Scholar
  34. 34.
    Graser A, Johnson TR, Chandarana H et al (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23PubMedCrossRefGoogle Scholar
  35. 35.
    Fletcher JG, Takahashi N, Hartman R et al (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin North Am 47:41–57PubMedCrossRefGoogle Scholar
  36. 36.
    Hartman R, Kawashima A, Takahashi N et al (2012) Applications of dual- energy CT in urologic imaging: An update. Radiol Clin North Am 50:191–205PubMedCrossRefGoogle Scholar
  37. 37.
    Petersilka M, Bruder H, Krauss B et al (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368PubMedCrossRefGoogle Scholar
  38. 38.
    Takahashi N, Hartman RP, Vrtiska TJ et al (2008) Dual-energy CT iodine-subtraction virtual unenhanced technique to detect urinary stones in an iodine-filled collecting system: a phantom study. AJR Am J Roentgenol 190:1169–1173PubMedCrossRefGoogle Scholar
  39. 39.
    Scheffel H, Stolzmann P, Frauenfelder T et al (2007) Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 42:823–829PubMedCrossRefGoogle Scholar
  40. 40.
    Takahashi N, Vrtiska TJ, Kawashima A et al (2010) Detectability of urinary stones on virtual nonenhanced images generated at pyelographic-phase dual-energy CT. Radiology 256:184–190PubMedCrossRefGoogle Scholar
  41. 41.
    Primak AN, Giraldo JC, Eusemann CD et al (2010) Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol 195:1164–1174PubMedCrossRefGoogle Scholar
  42. 42.
    Primak AN, Ramirez Giraldo JC, Liu X et al (2009) Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys 36:1359–1369PubMedCrossRefGoogle Scholar
  43. 43.
    Mangold S, Thomas C, Fenchel M et al (2012) Virtual nonenhanced dual-energy CT urography with tin-filter technology: determinants of detection of urinary calculi in the renal collecting system. Radiology 264:119–125PubMedCrossRefGoogle Scholar
  44. 44.
    Ascenti G, Mileto A, Gaeta M et al (2013) Single-phase dual-energy CT urography in the evaluation of haematuria. Clin Radiol 68:87–94CrossRefGoogle Scholar
  45. 45.
    Toepker M, Moritz T, Krauss B et al (2012) Virtual non-contrast in second- generation, dual-energy computed tomography: reliability of attenuation values. Eur J Radiol 81:398–405CrossRefGoogle Scholar
  46. 46.
    Karlo CA, Gnannt R, Winklehner A et al (2013) Split-bolus dual energy CT urography: protocol optimization and diagnostic performance for the detection of urinary stones. Abdom Imaging. doi: 10.1007/s00261-013-9992-9 PubMedGoogle Scholar
  47. 47.
    Takeuchi M, Kawai T, Ito M et al (2012) Split-bolus CT-urography using dual-energy CT: feasibility, image quality and dose reduction. Eur J Radiol 81:3160–3165PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Achille Mileto
    • 1
    • 2
  • Carmelo Sofia
    • 1
  • Silvio Mazziotti
    • 1
  • Alfredo Blandino
    • 1
  • Emanuele Scribano
    • 1
  • Giorgio Ascenti
    • 1
    Email author
  1. 1.Department of Biomedical Sciences and Morphological and Functional ImagingUniversity of Messina, Policlinico “G. Martino”MessinaItaly
  2. 2.Department of RadiologyDuke University Medical CenterDurhamUSA

Personalised recommendations