Advertisement

Conclusions

  • Alessandra Piontelli
Chapter

Abstract

Main points: fetal motions as bottom-up building blocks of the organism including the brain, corticalization of behavior after birth, worth investigating seemingly trivial and unexplained phenomena, and the top-down, prevailing view, fetuses as unborn newborns

Keywords

General Movement Fetal Motion Facial Motion Tactile Perception Tongue Protrusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Oppenheim RW (1981) Ontogenetic adaptation and retrogressive processes in the development of the nervous system and behavior: a neuroembryological perspective. In: Connolly KJ, Prechtl HFR (eds) Maturation and development: biological and psychological perspectives. Lippincott, New York, pp 77–109Google Scholar
  2. 2.
    Oppenheim RW (1984) Ontogenetic adaptations in neural and behavioral development: toward a more ‘ecological’ developmental psychobiology. In: Prechtl HFR (ed) Continuity of neural functions from prenatal to postnatal life. Spastics International Medical Publications, London, pp 16–30Google Scholar
  3. 3.
    Alberts JRA, Cramer CP (1988) Ecology and experience; sources of means and meaning of development change. In: Blass EM (ed) Handbook of behavioral neurobiology, vol 9, Behavioral ecology and developmental psychobiology. Plenum Press, New York, pp 1–39Google Scholar
  4. 4.
    Alberts JRA (2007) Huddling by rat pups. Ontogeny of Individual and group behavior. Dev Psychobiol 49:22–32CrossRefPubMedGoogle Scholar
  5. 5.
    Alberts JRA (2008) The nature of nurturant niches in ontogeny. Philos Psychol 21(3):295–303CrossRefGoogle Scholar
  6. 6.
    Hofer MH (1988) On the nature and function of prenatal behavior. In: Smootherman WP, Robinson SR (eds) Behavior of the fetus. Telford Press, Caldwell, pp 3–18Google Scholar
  7. 7.
    Rodrigues JI et al (1992) Morphological changes in long bone development in fetal akinesia deformation: an experimental study in curarized rat fetuses. Teratology 45:213–221CrossRefGoogle Scholar
  8. 8.
    Sival DA et al (1990) Does reduction of amniotic fluid affect fetal movements? Early Hum Dev 23:233–246CrossRefPubMedGoogle Scholar
  9. 9.
    Christianson C et al (1999) Limb deformation in oligohydramnios sequence. Am J Med Genet 86:430–433CrossRefPubMedGoogle Scholar
  10. 10.
    Piontelli A (2006) On the onset of human fetal behavior. In: Mancia M (ed) Psychoanalysis and neuroscience. Springer, MilanoGoogle Scholar
  11. 11.
    Piontelli A (2010) Development of normal fetal movements: the first 25 weeks of gestation. Springer, MilanoCrossRefGoogle Scholar
  12. 12.
    Sillar KT (2002) Motor control network development. Wiley, Hoboken. doi: 10.1038/npg.els.0000834. Wiley online Library. Published online: 24 Oct 2002Google Scholar
  13. 13.
    Husang ZJ (2009) Activity-dependent development of inhibitory synapses and innervation pattern: role of GABA signalling and beyond. J Physiol 587:1881–1888CrossRefGoogle Scholar
  14. 14.
    Piontelli A, Mancia M (2004) On the beginning of sleep in the human fetus. Paper presented at the 5th European symposium on sleep medicine, Pisa, 2004Google Scholar
  15. 15.
    Snyder JM (2010) Regulation of alveolarization. In: Polin RA et al (eds) Fetal and neonatal physiology, vol I, Section XII: The Lung. Saunders, Philadelphia, pp 887–884Google Scholar
  16. 16.
    Hillsop AA et al (1986) Alveolar development in the human fetus and infant. Early Hum Dev 13:1–10CrossRefGoogle Scholar
  17. 17.
    Harding R, Hooper SB (2010) Physiological mechanisms of normal and altered lung growth before and after birth. In: Polin RA et al (eds) Fetal and neonatal physiology, vol I, Section XII: The Lung. Saunders, Philadelphia, pp 885–895Google Scholar
  18. 18.
    Abu-Shaweesh JM (2010) Respiratory disorders in preterm and term infants. In: Martin RJ et al (eds) Fanaroff & Martin’s neonatal-perinatal medicine. Mosby Elsevier, St. Louis, pp 1141–1206Google Scholar
  19. 19.
    Miller MJ, Martin RJ (2010) Pathophysiology of apnea of prematurity. In: Polin RA et al (eds) Fetal and neonatal physiology, vol I, 9th edn, Section XII: The Lung. Saunders, Philadelphia, pp 1026–1033Google Scholar
  20. 20.
    Hanson MA et al (eds) (1994) Breathing, vol 2, Fetus and neonate: physiology and clinical applications. Cambridge University Press, Cambridge, UKGoogle Scholar
  21. 21.
    Mizuno K, Ueda A (2003) The maturation and coordination of sucking, swallowing, and respiration in preterm infants. J Pediatr 142:36–40CrossRefPubMedGoogle Scholar
  22. 22.
    Lau C et al (1997) Oral feeding in low birth weight infants. J Pediatr 130:561–569CrossRefPubMedGoogle Scholar
  23. 23.
    Couture A (2008) Fetal gastrointestinal tract: US and MR. In: Couture A et al (eds) Gastrointestinal tract sonography in fetuses and children. Springer, Berlin, pp 5–18Google Scholar
  24. 24.
    Lotgering FK, Wallenburg HCS (1986) Mechanisms of production and clearance of amniotic fluid. Semin Perinatol 10:94–100PubMedGoogle Scholar
  25. 25.
    Mulvihill SJ et al (1986) Trophic effect of amniotic fluid on fetal gastrointestinal development. J Surg Res 40(4):291–296CrossRefPubMedGoogle Scholar
  26. 26.
    Carskadon MA, Dement WC (2010) Normal human sleep: an overview. In: Kryger MH et al (eds) Principles and practice of sleep medicine, 5th edn. Saunders, Philadelphia, pp 16–26Google Scholar
  27. 27.
    Volpe JJ (2008) Neurology of the newborn, 5th edn. Saunders, Philadelphia, pp 121–153Google Scholar
  28. 28.
    Alajuanine T, Gastaut H (1955) La syncinésie-sursaut et l’épilépsie-sursaut à déclanchement sensoriel or sensitif inopiné. I. Les faits anatomocliniques (15 observations). Rev Neurol 93:29–41Google Scholar
  29. 29.
    Usta I et al (2007) Ultrasonographic diagnosis of fetal seizures: a case report and review of the literature. Br J Obstet Gynaecol 114:1031–1033CrossRefGoogle Scholar
  30. 30.
    Blumberg MS, Lucas DE (1996) Dual mechanism of twitching during sleep in neonatal rats. Behav Neurosci 108:1196–1202CrossRefGoogle Scholar
  31. 31.
    Kreider JC, Blumberg MS (2000) Mesopontine contribution to the expression of active ‘twitch’ sleep in decerebrate week-old rats. Brain Res 872:149–159CrossRefPubMedGoogle Scholar
  32. 32.
    Futagy Y et al (1997) Prognosis of infants with ankle clonus within the first year of life. Brain Dev 19:50–54CrossRefGoogle Scholar
  33. 33.
    Volpe JJ (2008) Neurology of the newborn, 5th edn. Saunders, Philadelphia, pp 203–244Google Scholar
  34. 34.
    Roberts RM (1999) On hiccuping and yawning: why we do it. Poster presentations in Clinical Genetics, N. 73. Vol. 1, N. 2Google Scholar
  35. 35.
    Provine RR (2014) Curious behavior: yawning, laughing, hiccupping, and beyond. Belknap Press, Cambridge, MAGoogle Scholar
  36. 36.
    Newsom Davis J (1970) An experimental study of hiccup. Brain 93:851–872CrossRefGoogle Scholar
  37. 37.
    Meltzoff AN, Moore MK (1977) Imitation of facial and manual gestures by neonates. Science 198:75–78CrossRefPubMedGoogle Scholar
  38. 38.
    Meltzoff AN, Moore MK (1997) Explaining facial imitation: a theoretical model. Early Dev Parenting 6:179–192CrossRefGoogle Scholar
  39. 39.
    Jones SS (2009) The development of imitation in infancy. Philos Trans R Soc Lond B Biol Sci 364:2325–2335CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Hickok G (2014) The myth of mirror neurons. WW Norton, New YorkGoogle Scholar
  41. 41.
    Nijhuis JG et al (1982) Are there behavioural states in the human fetus? Early Hum Dev 6(2):177–195CrossRefPubMedGoogle Scholar
  42. 42.
    Parmalee AH et al (1967) Sleep states in premature infants. Dev Med Child Neurol 9:70–77CrossRefGoogle Scholar
  43. 43.
    Rigatto H et al (1986) Fetal breathing and behavior measured through a double-wall Plexiglas window in sheep. J Appl Physiol 61(July):160–164PubMedGoogle Scholar
  44. 44.
    McNamara F et al (2002) Spontaneous arousal activity in infants during NREM and REM sleep. J Physiol 538:263–269CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Bridgeman B (1983) Phasic eye movement control appears before tonic control in human fetal development. Invest Ophtalmol Vis Sci 24(5):658–659Google Scholar
  46. 46.
    Haganu IL et al (2006) Retinal waves trigger spindle bursts in the neonatal rat visual cortex. J Neurosci 6(25):6728–6736CrossRefGoogle Scholar
  47. 47.
    Baguma-Nibasheka M et al (2007) Fetal ocular movements and retinal cell differentiation: analysis employing DNA microarrays. Histol Histopathol 21(12):1331–1337Google Scholar
  48. 48.
    Balabam E et al (2012) Waking-like brain function in embryos. Curr Biol 22(May):852–861CrossRefGoogle Scholar
  49. 49.
    Lesku JA et al (2009) Phylogeny and ontogeny of sleep. In: Stickgold R, Walker M (eds) The neuroscience of sleep. Academic, Oxford, pp 61–69CrossRefGoogle Scholar
  50. 50.
    Cirelli C, Tononi G (2011) Molecular neurobiology of sleep. In: Winken PJ, Bruyn GW (eds) Handbook of clinical neurology. Elsevier, New York, pp 191–203Google Scholar
  51. 51.
    Karlsonn KAE et al (2011) Dynamics of sleep-wake cyclicity across the fetal period in sheep (Ovis aries). Dev Psychobiol 53:89–95CrossRefGoogle Scholar
  52. 52.
    Ben-Ari Y et al (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284CrossRefPubMedGoogle Scholar
  53. 53.
    Lydic R, Baghdoyan AH (2002) Neurochemical evidence for cholinergic modulation of sleep and breathing. In: Carley D, Radulovacki M (eds) Sleep related breathing disorders. Marcel Dekker, New York, pp 57–91Google Scholar
  54. 54.
    Llinàs RR, Terzuolo CA (1964) Mechanisms of supraspinal actions upon spinal cord activities. J Neurophysiol 27:579–591PubMedGoogle Scholar
  55. 55.
    Jouvet M (1962) Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch Ital Biol 100:125–206PubMedGoogle Scholar
  56. 56.
    Arabin B et al (1995) Intrauterine behavior. In: Keith LG et al (eds) Multiple pregnancy: epidemiology, gestation and perinatal outcome. The Parthenon Publishing Group, New YorkGoogle Scholar
  57. 57.
    Castiello U et al (2010) Wired to be social: the ontogeny of human interaction. PLoS One 5(10):e13199. doi: 10.1371/journal.pone.0013199 CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Piontelli A (2000) Is there something wrong? The impact of technology in pregnancy. In: Raphael-Leff J (ed) Spilt milk: perinatal loss and breakdown. Institute of Psychoanalysis, LondonGoogle Scholar
  59. 59.
    Porter RH (1991) Mutual mother-infant recognition in humans. In: Hepper PG (ed) Kin recognition. Cambridge University Press, New York, pp 413–432Google Scholar
  60. 60.
    Prechtl HFR (1984) Continuity and change in neural development. In: Prechtl HFR (ed) Continuity of neural functions from prenatal to postnatal life. Spastics International Medical Publications, London, pp 1–15Google Scholar
  61. 61.
    Royal College of Obstetricians and Gynecologists (2010) Fetal awareness. Review of research and recommendations for practice. Royal College of Obstetricians and Gynecologists, LondonGoogle Scholar
  62. 62.
    Dechesne CJ (1992) The development of the vestibular sensory organs in humans. In: Romand R (ed) Development of auditory and vestibular systems 2. Elsevier, Amsterdam, pp 419–443Google Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  • Alessandra Piontelli
    • 1
  1. 1.Department of Maternal/Fetal Medicine Clinica MangiagalliFondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico University of MilanMilanItaly

Personalised recommendations