Skip to main content

Ruolo del packaging nel controllo delle alterazioni microbiche degli alimenti

  • Chapter
  • First Online:
Manuale di microbiologia predittiva

Part of the book series: Food ((FOOD))

  • 850 Accesses

Riassunto

Tra le numerose funzioni assegnate ai materiali e ai sistemi di confezionamento, le più importanti sono certamente quelle relative alla protezione degli alimenti e alla prevenzione delle possibili alterazioni di natura microbica, i cui effetti possono essere deleted sia per la qualità sia per la sicurezza dei prodotti. Una conoscenza corretta e approfondita di questo fondamentale ruolo del packaging — e, soprattutto, la possibilità di poterlo stimare e quantificare in anticipo — è particolarmente utile nella scelta delle forme di confezionamento più idonee e nell’organizzazione e nella gestione della logistica distributiva.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  • Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3(2): 113–126

    Article  CAS  Google Scholar 

  • ASTM (2010) ASTM D3985 — 05(2010)e1 Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor

    Google Scholar 

  • ASTM (2012) ASTM E96/E96M-12 Standard test methods for water vapor transmission of materials

    Google Scholar 

  • Azeredo J, Visser J, Oliveira R (1999) Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids Surfaces B: Biointerfaces, 14(1–4): 141–148

    Article  CAS  Google Scholar 

  • Barrer RM, Rideal EK (1939) Permeation, diffusion and solution of gases in organic polymers. Transactions of the Faraday Society, 35: 628–643

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Sharma A, Bhattacharya PK (1994) Surface interactions in osmotic pressure controlled flux decline during ultrafiltration. Langmuir, 10(12): 4710–4720

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Sharma A, Bhattacharya PK (1996) Estimation and influence of long range solute-membrane interactions in ultrafiltration. Industrial & Engineering Chemistry Research, 35(9): 3108–3121

    Article  CAS  Google Scholar 

  • Binderup M, Pedersen GA, Vinggaard AM et al (2002) Toxicity testing and chemical analyses of recycled fibre-based paper for food contact. Food Additives and Contaminants, 19(Suppl): 13–28

    Article  CAS  PubMed  Google Scholar 

  • Bruinsma GM, van der Mei HC, Busscher HJ (2001) Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials, 22(24): 3217–3224

    Article  CAS  PubMed  Google Scholar 

  • Buonocore GG, Conte A, Corbo MR et al (2005) Mono-and multilayer active films containing lysozyme as antimicrobial agent. Innovative Food Science and Emerging Technologies, 6(4): 459–464

    Article  CAS  Google Scholar 

  • Buonocore GG, Sinigaglia M, Corbo MR et al (2004) Controlled release of antimicrobial compounds from highly swellable polymers. Journal of Food Protection, 67(6): 1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Busscher HJ, van de Belt-Gritter B, van der Mei HC (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity. 1. Zeta potentials of hydrocarbon droplets. Colloids Surfaces B: Biointerfaces, 5(3–4): 111–116

    Article  CAS  Google Scholar 

  • Dainelli D, Gontard N, Spyropoulos D et al (2008) Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19(Suppl 1): S103–S112

    Article  CAS  Google Scholar 

  • Dexter SC, Sullivan Jr JD, Williams III J, Watson SW (1975) Influence of substrate wettability on the attachment of marine bacteria to various surfaces. Applied Microbiology, 30(2): 298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle RJ (2000) Contribution of the hydrophobic effect to microbial infection. Microbes and Infection, 2(4): 391–400

    Article  CAS  PubMed  Google Scholar 

  • Duncan-Hewitt WC (1990) Nature of the hydrophobic effect. In: Doyle RJ, Rosenberg M (eds) Microbial cell surface hydrophobicity. ASM Publications, Washington DC, pp 39–73

    Google Scholar 

  • Hernandez RJ, Gavara R (1999) Plastic packaging. Methods for studying mass transfer interactions: a literature review. PIRA International, Leatherhead, UK, pp 1–42

    Google Scholar 

  • Hong S, Elimelech M (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science, 132(2): 159–181

    Article  CAS  Google Scholar 

  • Introzzi L, Fuentes-Alventosa JM, Cozzolino CA et al (2012) “Wetting Enhancer” pullulan coating for antifog packaging applications. ACS Applied Materials & Interfaces, 4(7): 3692–3700

    Article  CAS  Google Scholar 

  • Kim YM, An DS, Park JH et al (2002) Properties of nisin-incorporated polymer coatings as antimicrobial packaging materials. Packaging Technology and Science, 15(5): 247–254

    Article  CAS  Google Scholar 

  • Labuza TP, Mizrahi S, Karel M (1972) Mathematical models for optimization of flexible film packaging of foods for storage. Transaction of the ASABE, 15(1): 150–155

    Article  CAS  Google Scholar 

  • Lee DS, Yam KL, Piergiovanni L (2008) Food Packaging, Science and Technology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surfaces B: Biointerfaces, 36(2): 81–90

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM (2006) Brock Biology of microorganisms, 11th edn. Pearson Education, Prentice Hall, Upper Saddle River

    Google Scholar 

  • Mascheroni E, Capretti G, Limbo S, Piergiovanni L (2012) Study of cellulose-lysozyme interactions aimed to a controlled release system for bioactives. Cellulose, 19(6): 1855–1866

    Article  CAS  Google Scholar 

  • Mastromatteo M, Mastromatteo M, Conte A, Del Nobile MA (2010) Advances in controlled release devices for food packaging applications. Trends in Food Science & Technology, 21(12): 591–598

    Article  CAS  Google Scholar 

  • Molin G (2000) Modified atmospheres. In: Lund BM, Baird-Parker TC, Gould GW (eds) The microbiological safety and quality of food, vol I. Aspen Publishers, Gaithersburg, Maryland, pp 214–234

    Google Scholar 

  • Nguyen VT, Chia TW, Turner MS et al (2011) Quantification of acid-base interactions based on contact angle measurement allows XDLVO predictions to attachment of Campylobacter jejuni but not Salmonella. Journal of Microbiological Methods, 86(1): 89–96

    Article  CAS  PubMed  Google Scholar 

  • Piergiovanni L, Fava P, Siciliano A (1995) A mathematical model for the prediction of water vapour transmission rate at different temperature and relative humidity combinations. Packaging Technology and Science, 8(2): 73–83

    Article  CAS  Google Scholar 

  • Piergiovanni L, Limbo S (2010) Food Packaging. Materiali, tecnologie e qualità degli alimenti. Springer, Milano

    Google Scholar 

  • Piergiovanni L, Pastorelli S, Fava P (1998) Previsione delle variazioni di composizione delle atmosfere protettive in imballaggi permeabili. Industrie Alimentari, 37: 305–311

    CAS  Google Scholar 

  • Ravishankar S, Maks ND, Teo AY-L et al (2005) Minimum leak size determination, under laboratory conditions, for bacterial entry into polymeric trays used for shelf-stable food packaging. Journal of Food Protection, 68(11): 2376–2382

    Article  PubMed  Google Scholar 

  • Regolamento (CE) n. 1935/2004 del Parlamente europeo e del Consiglio del 27 ottobre 2004 riguardante i materiali e gli oggetti destinati a venire a contatto con i prodotti alimentari e che abroga le direttive 80/590/CEE e 89/109/CEE

    Google Scholar 

  • Ringus DL, Moraru CI (2013) Pulsed light inactivation of Listeria innocua on food packaging materials of different surface roughness and reflectivity. Journal of Food Engineering, 114(3): 331–337

    Article  Google Scholar 

  • Rogers CE (1985) Permeation of gases and vapours in polymers. In: Comyn J (ed) Polymer permeability. Elsevier, London, pp 11–73

    Chapter  Google Scholar 

  • Suominen I, Suihko ML, Salkinoja-Salonen M (1997) Microscopic study of migration of microbes in food-packaging paper and board. Journal of Industrial Microbiology & Biotechnology, 19(2): 104–113

    Article  CAS  Google Scholar 

  • Turtoi M, Nicolau A (2007) Intense light pulse treatment as alternative method for mould spores destruction on paper-polyethylene packaging material. Journal of Food Engineering, 83(1): 47–53

    Article  CAS  Google Scholar 

  • Uesugi AR, Woodling SE, Moraru CI (2007) Inactivation kinetics and factors of variability in the pulsed light treatment of Listeria innocua cells. Journal of Food Protection, 70(11): 2518–2525

    Article  PubMed  Google Scholar 

  • van der Mei HC, van de Belt-Gritter B, Busscher HJ (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity. 2. Adhesion mechanisms. Colloids Surfaces B: Biointerfaces, 5(3–4): 117–126

    Google Scholar 

  • van Oss CJ (1991) The forces involved in bioadhesion to flat surfaces and particles. Their determination and relative roles. Biofouling, 4(1–3): 25–35

    Google Scholar 

  • van Oss CJ (1997) Hydrophobicity and hydrophilicity of biosurfaces. Current Opinion in Colloid & Interface Science, 2: 503–512

    Article  Google Scholar 

  • van Oss CJ, Docoslis A, Wu W, Giese RF (1999) Influence of macroscopic and microscopic interactions on kinetic rate constants: I. Role of the extended DLVO theory in determining the kinetic adsorption constant of proteins in aqueous media, using von Smoluchowski’s approach. Colloids Surfaces B: Biointerfaces, 14(1–4): 99–104

    Google Scholar 

  • van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and non additive surface tension components and the interpretation of contact angles. Langmuir, 4(4): 884–891

    Article  Google Scholar 

  • Zhang Y, Chikindas ML, Yam KL (2004) Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. International Journal of Food Microbiology, 19(1): 15–22

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Piergiovanni, L., Limbo, S. (2013). Ruolo del packaging nel controllo delle alterazioni microbiche degli alimenti. In: Gardini, F., Parente, E. (eds) Manuale di microbiologia predittiva. Food. Springer, Milano. https://doi.org/10.1007/978-88-470-5355-7_9

Download citation

Publish with us

Policies and ethics