Advertisement

Νormal Bone Marrow: Anatomy, Function, Conversion, and Reconversion

  • Lia Angela Moulopoulos
  • Vassilis Koutoulidis
Chapter

Abstract

Bone marrow is the organ responsible for blood cell production in humans. It is also the fourth largest organ of the body by weight, following bone, muscle, and fat [1]. It is estimated that, in humans, bone marrow accounts for approximately 4–5 % of the total body weight [2, 3]. Marrow is soft and pulpy and fills the osseous medullary cavities. The latter consist of multiple small spaces between trabeculae and larger cavities within the shafts of long bones. Although the evolutionary processes that led to confinement of hematopoiesis to the osseous medullary cavities are not yet fully understood, there is a rapidly evolving field of research examining the close association between skeletal and hematopoietic tissue (e.g., the role of endosteal osteoblasts in regulating the hematopoietic microenvironment through their interaction with hematopoietic stem cells) [4, 5].

Keywords

Blood Cell Production Nutrient Artery Yellow Marrow Hematopoietic Microenvironment Bone Marrow Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vogler JB 3rd, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693CrossRefPubMedGoogle Scholar
  2. 2.
    Picker LJ, Siegelman MH (1999) Lymphoid tissues and organs. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 479–531Google Scholar
  3. 3.
    Takaku T, Malide D, Chen J et al (2010) Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy. Blood 116(15):e41–e55CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Garrett RW, Emerson SG (2009) Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches. Cell Stem Cell 4:503–506CrossRefPubMedGoogle Scholar
  5. 5.
    Bianco P (2011) Bone and the hematopoietic niche: a tale of two stem cells. Blood 117:5281–5288CrossRefPubMedGoogle Scholar
  6. 6.
    Snyder WS, Cook MJ, Nasset ES et al (1975) Report of the task group on reference man. In: International commission on radiological protection. Pergamon Press, Oxford, pp 85–98Google Scholar
  7. 7.
    Hartsock RJ, Smith EB, Petty CS (1965) Normal variations with aging of the amount of hematopoietic tissue in bone marrow from the anterior iliac crest. Am J Clin Pathol 43:326–331PubMedGoogle Scholar
  8. 8.
    Piney A (1922) The anatomy of the bone marrow with special reference to the distribution of the red marrow. Br Med J 28:792–795Google Scholar
  9. 9.
    Junqueira LC, Carneiro J (1980) The life cycle of blood cells. In: Basic histology: text and atlas. Lange, California, pp 73–79Google Scholar
  10. 10.
    Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34:548–565CrossRefPubMedGoogle Scholar
  11. 11.
    Kricun ME (1985) Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol 14:10–19CrossRefPubMedGoogle Scholar
  12. 12.
    Krebsbach PH, Kuznetsof SA, Bianco P et al (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10(2):165–181CrossRefPubMedGoogle Scholar
  13. 13.
    Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192CrossRefPubMedGoogle Scholar
  14. 14.
    Valdez R, Zutter M, Florea AD et al (2012) Hematopathology. In: Rubin R, Strayer DS (eds) Rubin’s pathology: clinicopathologic foundations of medicine, 6th edn. Lippincott Williams & Wilkins, Philadelphia/Baltimore/New York/London/Buenos Aires/Honk Kong/Sydney/Tokyo, pp 947–1036Google Scholar
  15. 15.
    Lichtman MA, Koury MJ (2010) Structure of the marrow and the hematopoietic microenvironment. In: Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT (eds) Williams hematology, 8th edn. McGraw-Hill, New York, pp 62–104Google Scholar
  16. 16.
    Weiss L, Geduldig U (1991) Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow. Blood 78(4):975–990PubMedGoogle Scholar
  17. 17.
    Neumann E (1868) Über die Bedeutung des Knochenmarks für die Blutbildung. Centralblatt für die Med Wissenschaft 6:689Google Scholar
  18. 18.
    Bizzozero G (1868) Sulla funzione ematopoetica del midollo delle ossa. Comunicazione preventiva. Gazz Med Ital Lombardia 28:381–382Google Scholar
  19. 19.
    Zech NH, Shkumatov A, Koestenbauer S (2007) The magic behind stem cells. J Assist Reprod Genet 24(6):208–214CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Neumann E (1882) Das Gesetz über die Verbreitung des gelben und roten Knochenmarks. Centralblatt für die Med Wissenschaft 18:321–323Google Scholar
  21. 21.
    Baron MH (2013) Concise review: early embryonic erythropoiesis: not so primitive after al. Stem Cells 31:849–856CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Baron MH (2003) Embryonic origin of mammalian hematopoiesis. Exp Hematol 31(12):1160–1169CrossRefPubMedGoogle Scholar
  23. 23.
    Chen LT, Weiss L (1975) The development of vertebral bone marrow of human fetuses. Blood 46:389–408PubMedGoogle Scholar
  24. 24.
    Charbord P, Tavian M, Humeau L et al (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87(10):​4109–4119PubMedGoogle Scholar
  25. 25.
    Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88CrossRefPubMedGoogle Scholar
  26. 26.
    Vande Berg BC, Malghem J, Lecouvet FE et al (1998) Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol 27:471–483CrossRefPubMedGoogle Scholar
  27. 27.
    Emery JL, Follett GF (1964) Regression of bone-marrow haemopoiesis from the terminal digits in the foetus and infant. Br J Haematol 10:485–489CrossRefPubMedGoogle Scholar
  28. 28.
    Huggins C, Blocksom BH Jr, Noonan WJ (1936) Temperature conditions in the bone marrow of rabbit, pigeon, and albino rat. Am J Physiol 115:395Google Scholar
  29. 29.
    Huggins C, Blocksom BH Jr, Noonan WJ (1936) Changes in outlying bone marrow accompanying a local increase in temperature within physiologic limits. J Exp Med 64:253CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Maniatis A, Tavassoli M, Crosby WH (1971) Factors affecting the conversion of yellow to red marrow. Blood 37:581–586PubMedGoogle Scholar
  31. 31.
    Tavassoli M, Yoffey JM (1983) Bone marrow: structure and function. Alan R. Liss, New YorkGoogle Scholar
  32. 32.
    Gurevitch O, Slavin S, Feldman AG (2007) Conversion of red bone marrow into yellow – cause and mechanisms. Med Hypotheses 69(3):531–536CrossRefPubMedGoogle Scholar
  33. 33.
    Jaramillo D, Laor T, Hoffer FA et al (1991) Epiphyseal marrow in infancy: MR imaging. Radiology 180:809–812CrossRefPubMedGoogle Scholar
  34. 34.
    Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol Bacteriol 94:275–291CrossRefPubMedGoogle Scholar
  35. 35.
    Kugel H, Jung C, Schulte O et al (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268CrossRefPubMedGoogle Scholar
  36. 36.
    Griffith JF, Yeung DKW, Ting Ma H et al (2012) Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 36:225–230CrossRefPubMedGoogle Scholar
  37. 37.
    Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838CrossRefPubMedGoogle Scholar
  38. 38.
    Oehlbeck LWF, Robscheit-Robbins FS, Whipple GH (1932) Marrow hyperplasia and hemoglobin reserve in experimental anemia due to bleeding. J Exp Med 56:425CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Hartman RP, Sundaram M, Okuno SH et al (2004) Effect of granulocyte-stimulating factors on marrow of adult patients with musculoskeletal malignancies: incidence and MRI findings. AJR Am J Roentgenol 183(3):645–653CrossRefPubMedGoogle Scholar
  40. 40.
    Custer RP, Ahlfeldt FE (1932) Studies on the structure and function of bone marrow. J Lab Clin Med 17:960Google Scholar
  41. 41.
    Shillingford JP (1950) The red bone marrow in heart failure. J Clin Pathol 3:24CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Ryan SP, Weinberger E, White KS et al (1995) MR imaging of bone marrow in children with osteosarcoma: effect of granulocyte colony-stimulating factor. AJR Am J Roentgenol 165(4):915–920CrossRefPubMedGoogle Scholar
  43. 43.
    Fletcher BD, Wall JE, Hanna SL (1993) Effect of hematopoietic growth factors on MR images of bone marrow in children undergoing chemotherapy. Radiology 189(3):745–751CrossRefPubMedGoogle Scholar
  44. 44.
    Moulopoulos LA (2010) Effects of treatment on bone marrow. In: Husband JE, Reznek RH (eds) Husband & Reznek’s imaging in oncology, 3rd edn. Informa Healthcare, London, pp 1259–1271Google Scholar
  45. 45.
    Ollivier L, Gerber S, Vanel D (2006) Improving the interpretation of bone marrow imaging in cancer patients. Cancer Imaging 6:194–198CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.1st Department of RadiologyUniversity of Athens School of MedicineAthensGreece

Personalised recommendations