Skip to main content

Advanced Breast Ultrasound and Interventions: An Update

  • Chapter
Musculoskeletal Diseases 2013–2016

Abstract

Ultrasound (US) technology has made progress in detecting and characterizing breast lesions, using frequencies between 7 and 18 MHz in combination with advanced tissue imaging technologies such as compound and harmonic imaging, volume scanning, modern color flow and elastography. The updated Breast Imaging Reporting and Data System (BI-RADS® ) lexicon incorporates these new technological concepts and their impact on management. To date, description of a lesion should cover the new BI-RADS® US categories of vascularity and elasticity as associated findings. US constitutes the assessment method of choice for women with clinical signs and symptoms. Fundamental US enhances sensitivity for detecting cancer by 6–30% in symptomatic breast cancer patients. In risk patients with radiodense breasts, additive US to screening mammography improves the supplemental diagnostic detection rate after negative mammography by three to four per 1,000 women with dense breasts. The generally accepted role of US in population-based screening focuses on the assessment of suspicious mammographically detected lesions. US is indicated and routinely used in breast centers for preoperative staging, to monitor therapy and to keep patients under surveillance after breast conservation. US-guided core needle biopsy is the standard interventional technique for all breast lesions that correlate with findings of other imaging modalities. Sensitivity of US-guided large core needle biopsy (CNB) is 93–98% specificity ranges from 95% to 100 %. The diagnostic accuracy of US-guided vacuum-assisted biopsy (VAB) is close to 100%. US-guided needle aspiration and CNB of the axilla should be used preoperatively to define metastatic lymph node involvement. Breast cancer screening based on automated whole breast US is an upcoming future horizon that will need sophisticated transfer of technological advancements to updated epidemiological concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mundinger A (2011) Ultrasound of the breast including interventions: an update. In Hodler J, von Schulthess GK, Zol-likofer CH L (Eds) Diseases of the heart, chest and breast 2011–2014. Springer-Verlag Italy, Milano, pp 259–266

    Google Scholar 

  2. Teboul M (2010) Advantages of ductal echography (DE) over conventional breast investigation in the diagnosis of breast malignancies. Medical Ultrasonography 2:32–42

    Google Scholar 

  3. Weismann C, Mayr C, Egger H, Auer A (2011) Breast sonography-2D,3D,4D ultrasound or elastography? Breast Care 6: 98–103

    Article  PubMed Central  PubMed  Google Scholar 

  4. Mundinger A, Wilson ARM, Weismann C et al (2010) Breast ultrasound — update. EJC Supplements 8:11–14

    Article  Google Scholar 

  5. ACR (2009) Practice guideline for the performance of ultrasound-guided percutaneous breast interventional procedures. Revised 2009. <http://www.acr.org/SecondaryMainMenuCate->gories/quality_safety/guidelines/breast/us_guided_breast.aspxSecondaryMainMenuCate->gories/quality_safety/guidelines/breast/us_guided_breast.aspx

  6. American College of Radiology (ACR) (2009) Practice guideline for the performance of stereotactically guided breast in-terventional procedures. Revised 2009. <http://www.acr.org/>SecondaryMainMenuCategories/quality_safety/guidelines/bre ast/stereotactically_guided_breast.aspx/>SecondaryMainMenuCategories/quality_safety/guidelines/bre ast/stereotactically_guided_breast.aspx

  7. McCormack VA, Dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of Breast Cancer Risk: A Meta-analysis. Cancer Epidemiol Biomarkers Prev15:1159–1169

    Article  PubMed  Google Scholar 

  8. Heywang-Köbrunner SH, Schreer I, Heindel et al (2008) Imaging studies for the early detection of breast cancer. Dtsch Arztebl Int 105:541–547

    PubMed Central  PubMed  Google Scholar 

  9. Madjar H, Rickard M, Jellins J et al (1999) IBUS guidelines for the ultrasonic examination of the breast. Eur J Ultrasound 9:99–102

    Article  CAS  PubMed  Google Scholar 

  10. Khouri NF (2009) Breast ultrasound. In: Harris J, Morrow M, Lippman M, Osborne C (Eds) Diseases of the breast, 4th edn. Wolter Kluwer, Lippincott Williams & Wilkins, Philadelphia, PA, pp 131–151

    Google Scholar 

  11. American College of Radiology (ACR) (2003) ACR BI-RADS® — Ultrasound. In: ACR Breast Imaging Reporting and Data System, Breast imaging atlas. American College of Radiology, Reston VA

    Google Scholar 

  12. Madjar H, Ohlinger R, Mundinger A et al (2006) BI-RADS-analogue DEGUM criteria for findings in breast ultrasound — consensus of the DEGUM Committee on Breast Ultrasound. Ultraschall Med 27(4):374–379

    Article  CAS  PubMed  Google Scholar 

  13. Wojcinski S, Farrokh A, Weber S et al (2010) Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall Med 31:484–91

    Article  CAS  PubMed  Google Scholar 

  14. Lazarus E, Mainiero MB, Schepps et al (2006) BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value. Radiology 239:385–91

    Article  PubMed  Google Scholar 

  15. Lee HJ, Kim EK, Kim MJ et al (2008) Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound. Eur J Radiol 65:293–298

    Article  PubMed  Google Scholar 

  16. Santana Montesdeoca JM, Gómez Arnáiz A, Fuentes Pavón R et al (2009) Diagnostic accuracy and interobserver variability in the BI-RADS ultrasound system. Radiologia 51:477–486

    Article  CAS  PubMed  Google Scholar 

  17. Abdullah N, Mesurolle B, El-Khoury M et al (2009) Breast imaging reporting and data system lexicon for US: interob-server agreement for assessment of breast masses. Radiology 25:2665–2672

    Google Scholar 

  18. Berg WA, Sechtin AG, Marques H et al (2010) Cystic breast masses and the ACRIN 6666 experience. Radiol Clin North Am 48:931–987

    Article  PubMed Central  PubMed  Google Scholar 

  19. Gruber R, Jaromi S, Rudas M et al (2012) Histologic work-up of non-palpable breast lesions classified as probably benign at initial mammography and/or ultrasound (BI-RADS category 3). Eur J Radiol [Epub ahead of print]

    Google Scholar 

  20. Fu CY, Hsu HH, Yu JC et al (2010) Influence of Age on PPV of Sonographic BI-RADS Categories 3, 4, and 5. Ultraschall Med 32:8–13

    Article  Google Scholar 

  21. Moon HJ, Kim MJ, Kwak JY et al (2010) Probably benign breast lesions on ultrasonography: a retrospective review of ultrasonographic features and clinical factors affecting the BI-RADS categorization. Acta Radiol 51:375–382

    Article  PubMed  Google Scholar 

  22. Moon HJ, Kim MJ, Kwak JY et al (2010) Malignant lesions initially categorized as probably benign breast lesions: retrospective review of ultrasonographic, clinical and pathologic characteristics. Ultrasound Med Biol 36:551–559

    Article  PubMed  Google Scholar 

  23. Berg WA, Zhang Z, Lehrer D et al; ACRIN 6666 Investigators (2012) Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA 07:1394–404

    Google Scholar 

  24. El Saghir NS, Anderson BO (2012) Breast cancer early detection and resources: where in the world do we start? The Breast 21:423–425

    Article  PubMed  Google Scholar 

  25. Mundinger A (2006) Staging the breast and axilla. EJC Supplements 4:35–37

    Article  Google Scholar 

  26. Lehman CD, DeMartini W, Anderson BO et al (2009) Indications for breast MRI in the patient with newly diagnosed breast cancer. J Natl Compr Canc Netw 7:193–201

    PubMed  Google Scholar 

  27. Cho N, Moon WK, Cha JH et al (2009) Ultrasound-guided vacuum-assisted biopsy of microcalcifications detected at screening mammography. Acta Radiol 50:602–609

    Article  PubMed  Google Scholar 

  28. Suh YJ, Kim MJ, Kim EK et al (2012) Comparison of the underestimation rate in cases with ductal carcinoma in situ at ultrasound-guided core biopsy: 14-gauge automated core-needle biopsy vs. 8-or 11-gauge vacuum-assisted biopsy. Br J Radiol 85:e349–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. 29. Barentsz MW, van Dalen T, Gobardhan PD et al (2012) Intraoperative ultrasound guidance for excision of non-palpable invasive breast cancer: a hospital-based series and an overview of the literature. Breast Cancer Res Treat 135:209–219

    Article  CAS  PubMed  Google Scholar 

  30. Houssami N, Hayes DF (2009) Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA Cancer J Clin 59:290–302

    Article  PubMed  Google Scholar 

  31. Turnbull L, Brown S, Harvey I et al (2010) Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. Lancet 375:563–571

    Article  PubMed  Google Scholar 

  32. Peters NH, van Esser S, van den Bosch MA et al (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET — randomised controlled trial. Eur J Cancer 47:879–886

    Article  CAS  PubMed  Google Scholar 

  33. Tozaki M, Fukuma E (2011) Does power Doppler ultrasonography improve the BI-RADS category assessment and diagnostic accuracy of solid breast lesions? Acta Radiol 52:706–710

    Article  PubMed  Google Scholar 

  34. Wang X, Xu P, Wang Y, Grant EG (2011) Contrast-enhanced ultrasonographic findings of different histopathologic types of breast cancer. Acta Radiol 52:248–255

    Article  PubMed  Google Scholar 

  35. Sadigh G, Carlos RC, Neal CH, Dwamena BA (2012) Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat 133:23–35

    Article  PubMed  Google Scholar 

  36. Gong X, Xu Q, Xu Z et al (2011) Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis. Breast Cancer Res Treat 130:11–18

    Article  PubMed  Google Scholar 

  37. Berg WA, Cosgrove DO, Dor é CJ et al for the BE1 Investigators (2012) Shear-wave elastography improves the specificity of breast US: the multinational study of 939 masses. Radiology 262:435–449

    Google Scholar 

  38. Evans A, Whelehan P, Thomson K (2012) Invasive breast cancer: relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology 263:673–677

    Article  PubMed  Google Scholar 

  39. Prosch H, Halbwachs C, Strobl C et al (2011) Automated breast ultrasound vs. handheld ultrasound: BI-RADS classification, duration of the examination and patient comfort. Ultraschall Med 32:504–10

    Article  CAS  PubMed  Google Scholar 

  40. Giuliano V, Giuliano C (2012) Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts. Clin Imaging [Epub ahead of print]

    Google Scholar 

  41. Choi YJ, Ko EY, Han BK et al (2009) High-resolution ultrasonographic features of axillary lymph node metastasis in patients with breast cancer. Breast 18:119–122

    Article  PubMed  Google Scholar 

  42. Alvarez S, Añorbe E, Alcorta P et al (2006) Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review. AJR Am J Roentgenol 186:1342–1348

    Article  PubMed  Google Scholar 

  43. Choi JS, Kim MJ, Moon HJ et al (2012) False negative results of preoperative axillary ultrasound in patients with invasive breast cancer: correlations with clinicopathologic findings. Ultrasound Med Biol 38:1881–1886

    Article  PubMed  Google Scholar 

  44. Cody HS 3rd, Houssami N (2012) Axillary management in breast cancer: what’s new for 2012? Breast 21:411–415

    Article  PubMed  Google Scholar 

  45. Pan L, Han Y, Sun X et al (2010) FDG-PET and other imaging modalities for the evaluation of breast cancer recurrence and metastases: a meta-analysis. J Cancer Res Clin Oncol 136:1007–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Mundinger, A. (2013). Advanced Breast Ultrasound and Interventions: An Update. In: Hodler, J., von Schulthess, G.K., Zollikofer, C.L. (eds) Musculoskeletal Diseases 2013–2016. Springer, Milano. https://doi.org/10.1007/978-88-470-5292-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5292-5_39

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5291-8

  • Online ISBN: 978-88-470-5292-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics