Advertisement

The Quantum Mechanical Arrows of Time

  • James B. HartleEmail author
Conference paper

Abstract

The familiar textbook quantum mechanics of laboratory measurements incorporates a quantum mechanical arrow of time—the direction in time in which state vector reduction operates. This arrow is usually assumed to coincide with the direction of the thermodynamic arrow of the quasiclassical realm of everyday experience. But in the more general context of cosmology we seek an explanation of all observed arrows, and the relations between them, in terms of the conditions that specify our particular universe. This paper investigates quantum mechanical and thermodynamic arrows in a time-neutral formulation of quantum mechanics for a number of model cosmologies in fixed background spacetimes. We find that a general universe may not have well defined arrows of either kind. When arrows are emergent they need not point in the same direction over the whole of spacetime. Rather they may be local, pointing in different directions in different spacetime regions. Local arrows can therefore be consistent with global time symmetry. [Editors note: for a video of the talk given by Prof. Hartle at the Aharonov-80 conference in 2012 at Chapman University, see quantum.chapman.edu/talk-15.]

Keywords

Quantum Mechanic Quantum Fluctuation Quantum Cosmology Spacetime Region Emergent Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author thanks Thomas Hertog for many discussions of the arrows of time in quantum cosmology and Murray Gell-Mann for discussions on the quantum mechanics of the universe over many decades. He thanks the Santa Fe Institute for supporting many productive visits there. The this work was supported in part by the National Science Foundation under grant PHY12-05500.

References

  1. 1.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932). English transl. Mathematical Foundations of Quantum Mechanics by R.T. Beyer (Princeton University Press, Princeton, 1955) zbMATHGoogle Scholar
  2. 2.
    L. Boltzmann, Zu Hrn. Zermelo’s Abhandlung Über die mechanische Erklärung Irreversibler Vorgange. Ann. Phys. 60, 392–398 (1897) CrossRefGoogle Scholar
  3. 3.
    J.B. Hartle, S.W. Hawking, T. Hertog, Classical universes of the no-boundary quantum state. Phys. Rev. D 77, 123537 (2008). arXiv:0803.1663 MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J.B. Hartle, S.W. Hawking, T. Hertog, The no-boundary measure of the universe. Phys. Rev. Lett. 100, 202301 (2008). arXiv:0711.4630 MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    J.B. Hartle, T. Hertog, Arrows of time in the bouncing universes of the no-boundary quantum state. Phys. Rev. D 85, 103524 (2012). arXiv:1104.1733 ADSCrossRefGoogle Scholar
  6. 6.
    Y. Aharonov, P. Bergmann, J. Lebovitz, Time asymmetry in the quantum process of measurement. Phys. Rev. 4B, 1410–1416 (1964) CrossRefGoogle Scholar
  7. 7.
    M. Gell-Mann, J.B. Hartle, Time symmetry and asymmetry in quantum mechanics and quantum cosmology, in The Physical Origins of Time Asymmetry, ed. by J. Halliwell, J. Pérez-Mercader, W. Zurek (Cambridge University Press, Cambridge, 1994). gr-qc/9309012 Google Scholar
  8. 8.
    H.J. Groenewold, Information in quantum measurement. Proc. K. Ned. Akad. Wet., Ser. B 55, 219 (1952) zbMATHGoogle Scholar
  9. 9.
    E. Wigner, The problem of measurement. Am. J. Phys. 31, 6 (1963) MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Y. Aharonov, D. Rohrlich, Quantum Paradoxes (Wiley-VCH, Weinheim, 2005) CrossRefzbMATHGoogle Scholar
  11. 11.
    B. Basu, D. Lynden-Bell, A survey of entropy in the universe. Q. J. R. Astron. Soc. 31, 359 (1990) ADSGoogle Scholar
  12. 12.
    X. Zhao, Y. Li, Q. Zhu, D. Fox, Co-evolution of cosmic entropy and structures in the universe. arXiv:1211.1677
  13. 13.
    J.B. Hartle, The physics of now. Am. J. Phys. 73, 101–109 (2005). gr-qc/0403001 ADSCrossRefGoogle Scholar
  14. 14.
    J.B. Hartle, Spacetime quantum mechanics and the quantum mechanics of spacetime, in Gravitation and Quantizations. Proceedings of the 1992 Les Houches Summer School, ed. by B. Julia, J. Zinn-Justin. Les Houches Summer School Proceedings, vol. LVII (North Holland, Amsterdam, 1995). gr-qc/9304006 Google Scholar
  15. 15.
    J.B. Hartle, Generalizing quantum mechanics for quantum spacetime, in The Quantum Structure of Space and Time: Proceedings of the 23rd Solvay Conference on Physics, ed. by D. Gross, M. Henneaux, A. Sevrin (World Scientific, Singapore, 2007). gr-qc/0602013 Google Scholar
  16. 16.
    S.W. Hawking, R. Laflamme, G.W. Lyons, Origin of time asymmetry. Phys. Rev. D 47, 5342–5356 (1993) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    J.B. Hartle, The quantum mechanics of cosmology, in Quantum Cosmology and Baby Universes: Proceedings of the 1989 Jerusalem Winter School for Theoretical Physics, ed. by S. Coleman, J.B. Hartle, T. Piran, S. Weinberg (World Scientific, Singapore, 1991), pp. 65–157 Google Scholar
  18. 18.
    R.B. Griffiths, Consistent Quantum Theory (Cambridge University Press, Cambridge, 2002) zbMATHGoogle Scholar
  19. 19.
    R. Omnès, Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994) zbMATHGoogle Scholar
  20. 20.
    M. Gell-Mann, The Quark and the Jaguar (Freeman, New York, 1994) zbMATHGoogle Scholar
  21. 21.
    J.B. Hartle, The quantum mechanics of closed systems, in Directions in General Relativity, Volume 1: A Symposium and Collection of Essays in Honor of Professor Charles W. Misner’s 60th Birthday, ed. by B.-L. Hu, M.P. Ryan, C.V. Vishveshwara (Cambridge University Press, Cambridge, 1993). arXiv:gr-qc/9210006 Google Scholar
  22. 22.
    P.C. Hohenberg, An introduction to consistent quantum theory. Rev. Mod. Phys. 2835, (2844) (2010) Google Scholar
  23. 23.
    R. Laflamme, Time-symmetric quantum cosmology and our universe. Class. Quantum Gravity 10, L79 (1993). arXiv:gr-qc/9301005 MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    D. Craig, Observation of the final condition: extragalactic background radiation and the time symmetry of the Universe. Ann. Phys. 251, (384) (1995). gr-qc/9704031
  25. 25.
    H. Price, Time’s Arrow and Archimedes’ Point (Oxford University Press, New York, 1996) Google Scholar
  26. 26.
    M. Gell-Mann, J.B. Hartle, Quasiclassical coarse graining and thermodynamic entropy. Phys. Rev. A 76, 022104 (2007). arXiv:quant-ph/0609190 ADSCrossRefGoogle Scholar
  27. 27.
    W.J. Cocke, Statistical time symmetry and two-time boundary conditions in physics and cosmology. Phys. Rev. 160, 1165 (1967) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Aharonov, L. Vaidman, The two-state vector formalism: an updated review, in Lect. Notes Phys., vol. 734, (2008), pp. 399–447 Google Scholar
  29. 29.
    C.J. Isham, Quantum logic and the histories approach to quantum theory. J. Math. Phys. 35, 2157 (1994). arXiv:gr-qc/9308006 MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. 30.
    J.B. Hartle, S.W. Hawking, The wave function of the Universe. Phys. Rev. D 28, 2960–2975 (1983) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    S.W. Hawking, The quantum state of the Universe. Nucl. Phys. B 239, 257–276 (1984) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    F. Hoyle, J.V. Narlikar, Symmetric electrodynamics and the arrow of time in cosmology. Proc. R. Soc. Lond. Ser. A 277, 1–23 (1964) MathSciNetADSCrossRefzbMATHGoogle Scholar
  33. 33.
    S. Carroll, J. Chen, Spontaneous inflation and the origin of the arrow of time. arXiv:hep-th/0410270

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Santa Fe InstituteSanta FeUSA
  2. 2.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations