The Limits of Black Hole Complementarity

  • Leonard SusskindEmail author
Conference paper


Black hole complementarity, as originally formulated in the 1990’s by Preskill, ’t Hooft, and myself is now being challenged by the Almheiri-Marolf-Polchinski-Sully firewall argument. The AMPS argument relies on an implicit assumption—the “proximity” postulate—which says that the interior of a black hole must be constructed from degrees of freedom that are physically near the black hole. The proximity postulate manifestly contradicts the idea that interior information is redundant with information in Hawking radiation, which is very far from the black hole. AMPS argue that a violation of the proximity postulate would lead to a contradiction in a thought-experiment in which Alice distills the Hawking radiation and brings a bit back to the black hole. According to AMPS the only way to protect against the contradiction is for a firewall to form at the Page time. But the measurement that Alice must make, is of such a fine-grained nature that carrying it out before the black hole evaporates may be impossible. Harlow and Hayden have found evidence that the limits of quantum computation do in fact prevent Alice from carrying out her experiment in less than exponential time. If their conjecture is correct then black hole complementarity may be alive and well. My aim here is to give an overview of the firewall argument, and its basis in the proximity postulate; as well as the counterargument based on computational complexity, as conjectured by Harlow and Hayden.


Black Hole Entanglement Entropy Exponential Time Qubit System Small Subsystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Susskind, L. Thorlacius, J. Uglum, The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). hep-th/9306069 MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    A. Almheiri, D. Marolf, J. Polchinski, J. Sully, Black holes: complementarity or firewalls? arXiv:1207.3123 [hep-th]
  3. 3.
    L. Susskind, The transfer of entanglement: the case for firewalls. arXiv:1210.2098 [hep-th]
  4. 4.
    D.N. Page, Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993). gr-qc/9305007 MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    D.N. Page, Information in black hole radiation. Phys. Rev. Lett. 71, 3743 (1993). hep-th/9306083 MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    P. Hayden, J. Preskill, Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 0709, 120 (2007). arXiv:0708.4025 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Y. Sekino, L. Susskind, Fast scramblers. J. High Energy Phys. 0810, 065 (2008). arXiv:0808.2096 [hep-th] ADSCrossRefGoogle Scholar
  8. 8.
    F. Dupuis, J. Florjanczyk, P. Hayden, D. Leung, Locking classical information. arXiv:1011.1612
  9. 9.
    N. Lashkari, D. Stanford, M. Hastings, T. Osborne, P. Hayden, Towards the fast scrambling conjecture. arXiv:1111.6580 [hep-th]
  10. 10.
    M.B. Plenio, S. Virmani, An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007). quant-ph/0504163 MathSciNetzbMATHGoogle Scholar
  11. 11.
    T. Banks, W. Fischler, S.H. Shenker, L. Susskind, M theory as a matrix model: a conjecture. Phys. Rev. D 55, 5112 (1997). hep-th/9610043 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    T. Banks, W. Fischler, I.R. Klebanov, L. Susskind, Schwarzschild black holes from matrix theory. Phys. Rev. Lett. 80, 226 (1998). hep-th/9709091 MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    I.R. Klebanov, L. Susskind, Schwarzschild black holes in various dimensions from matrix theory. Phys. Lett. B 416, 62 (1998). hep-th/9709108 MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    T. Banks, W. Fischler, I.R. Klebanov, L. Susskind, Schwarzschild black holes in matrix theory. 2. J. High Energy Phys. 9801, 008 (1998). hep-th/9711005 MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    L. Susskind, Some speculations about black hole entropy in string theory, in The black hole, ed. by C. Teitelboim, (1993), pp. 118–131. hep-th/9309145 Google Scholar
  16. 16.
    D.N. Page, Comment on ‘Entropy evaporated by a black hole’. Phys. Rev. Lett. 50, 1013 (1983) ADSCrossRefGoogle Scholar
  17. 17.
    B. Freivogel, L. Susskind, A framework for the landscape. Phys. Rev. D 70, 126007 (2004). hep-th/0408133 MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    R. Bousso, L. Susskind, The multiverse interpretation of quantum mechanics. Phys. Rev. D 85, 045007 (2012). arXiv:1105.3796 [hep-th] ADSCrossRefGoogle Scholar
  19. 19.
    G. Horowitz, A. Lawrence, E. Silverstein, Insightful D-branes. J. High Energy Phys. 0907, 057 (2009). arXiv:0904.3922 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    I. Heemskerk, D. Marolf, J. Polchinski, J. Sully, Bulk and transhorizon measurements in AdS/CFT. J. High Energy Phys. 1210, 165 (2012). arXiv:1201.3664 [hep-th] ADSCrossRefGoogle Scholar
  21. 21.
    R. Bousso, Observer complementarity upholds the equivalence principle. arXiv:1207.5192 [hep-th]
  22. 22.
    D. Harlow, Complementarity, not firewalls. arXiv:1207.6243
  23. 23.
    D. Harlow, P. Hayden, Talks given at the SITP meeting on firewalls (2012). To be published Google Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations