Advertisement

Standard and Null Weak Values

  • Oded ZilberbergEmail author
  • Alessandro Romito
  • Yuval Gefen
Conference paper

Abstract

Weak value (WV) is a quantum mechanical measurement protocol, proposed by Aharonov, Albert, and Vaidman. It consists of a weak measurement, which is weighed in, conditional on the outcome of a later, strong measurement. Here we define another two-step measurement protocol, null weak value (NVW), and point out its advantages as compared to WV. We present two alternative derivations of NWVs and compare them to the corresponding derivations of WVs.

Keywords

Hilbert Space Conditional Probability Measurement Protocol Qubit State Weak Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by GIF, the Israel science foundation, Minerva Foundation of the DFG, Israel-Korea MOST grant, and EU GEOMDISS.

References

  1. 1.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932) zbMATHGoogle Scholar
  2. 2.
    Y. Aharonov, D. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988) ADSCrossRefGoogle Scholar
  3. 3.
    A. Romito, Y. Gefen, Physica E 42, 343 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    H. Wiseman, Phys. Rev. A 65, 032111 (2002) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    R. Jozsa, Phys. Rev. A 76, 044103 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    J. Dressel, S. Agarwal, A.N. Jordan, Phys. Rev. Lett. 104, 240401 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    N.W.M. Ritchie, J.G. Story, R.G. Hulet, Phys. Rev. Lett. 66, 1107 (1991) ADSCrossRefGoogle Scholar
  8. 8.
    G. Pryde, J. O’Brien, A. White, T. Ralph, H. Wiseman, Phys. Rev. Lett. 94, 220405 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    O. Hosten, P. Kwiat, Science 319, 787 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    P.B. Dixon, D.J. Starling, A.N. Jordan, J.C. Howell, Phys. Rev. Lett. 102, 173601 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    D. Starling, P. Dixon, A. Jordan, J. Howell, Phys. Rev. A 80, 041803 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    N. Brunner, C. Simon, Phys. Rev. Lett. 105, 010405 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    D.J. Starling, P.B. Dixon, N.S. Williams, A.N. Jordan, J.C. Howell, Phys. Rev. A 82, 011802 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    N.S. Williams, A.N. Jordan, Phys. Rev. Lett. 100, 4 (2008) Google Scholar
  15. 15.
    A. Romito, Y. Gefen, Y.M. Blanter, Phys. Rev. Lett. 100, 056801 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    V. Shpitalnik, Y. Gefen, A. Romito, Phys. Rev. Lett. 101, 226802 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    O. Zilberberg, A. Romito, Y. Gefen, Phys. Rev. Lett. 106, 080405 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    X. Zhu, Y. Zhang, S. Pang, C. Qiao, Q. Liu, S. Wu, Phys. Rev. A 84, 052111 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    O. Zilberberg, A. Romito, D.J. Starling, G.A. Howland, C.J. Broadbent, J.C. Howell, Y. Gefen, Phys. Rev. Lett. 110, 170405 (2013) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Oded Zilberberg
    • 1
    Email author
  • Alessandro Romito
    • 2
  • Yuval Gefen
    • 1
  1. 1.Department of Condensed Matter PhysicsWeizamnn Institute of ScienceRehovotIsrael
  2. 2.Dahlem Center for Complex Quantum Systems and Fachbereich PhysikFreie Universität BerlinBerlinGermany

Personalised recommendations