Advertisement

Superoscillations, Endfire and Supergain

  • M. V. BerryEmail author

Abstract

Superoscillatory functions vary faster than their fastest Fourier component. Here they are employed to give an alternative description and explicit recipe for creating endfire arrays with supergain, that is antennas with radiation patterns concentrated in an arbitrarily narrow angular range and of arbitrary form. Two examples are radiation patterns described by sinc and Gaussian functions. [Editor’s note: for a video of the talk given by Prof. Berry (titled ‘Weak Value Probabilities’) at the Aharonov-80 conference in 2012 at Chapman University, see quantum.chapman.edu/talk-6.]

Keywords

Radiation Pattern Forward Direction Line Source Hermite Polynomial Excitation Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank Professor Stephen Lipson for introducing me to supergain, Professor Sandu Popescu for a helpful suggestion, Chapman University for generous hospitality while this work was begun, and the Leverhulme Trust for research support—and of course Yakir Aharonov for continuing inspiration.

References

  1. 1.
    Y. Aharonov, D.Z. Albert, L. Vaidman, How the result of a measurement of a component of the spin of a spin 1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    Y. Aharonov, D. Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed (Wiley-VCH, Weinheim, 2005) CrossRefGoogle Scholar
  3. 3.
    Y. Aharonov, S. Popescu, J. Tollaksen, A time-symmetric formulation of quantum mechanics. Phys. Today 63(11), 27–33 (2010) CrossRefGoogle Scholar
  4. 4.
    M.V. Berry, in Faster than Fourier in Quantum Coherence and Reality; in Celebration of the 60th Birthday of Yakir Aharonov, ed. by J.S. Anandan, J.L. Safko (World Scientific, Singapore, 1994), pp. 55–65 Google Scholar
  5. 5.
    A. Kempf, P.J.S.G. Ferreira, Unusual properties of superoscillating particles. J. Phys. A 37, 12067–12076 (2004) MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Y. Aharonov, F. Colombo, I. Sabadini, D.C. Struppa, J. Tollaksen, Some mathematical properties of superoscillations. J. Phys. A 44, 365304 (2011). (16 pp.) MathSciNetCrossRefGoogle Scholar
  7. 7.
    S.A. Schelkunoff, A mathematical theory of linear arrays. Bell Syst. Tech. J. 22, 80–107 (1943) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    R.C. Hansen, Linear arrays, ed. by A.W. Rudge, K. Milne, A.D. Olver, P. Knight, The Handbook of Antenna Design, vol. 2 (Peter Peregrinus, London, 1983), pp. 1–134 CrossRefGoogle Scholar
  9. 9.
    H. Cox, R.M. Zeskind, T. Kooij, Practical supergain. IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 393–398 (1986) CrossRefGoogle Scholar
  10. 10.
    R.P. Haviland, Supergain antennas: possibilities and problems. IEEE Antennas Propag. Mag. 37, 13–26 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    G. Toraldo di Francia, SuperGain antennas and optical resolving power. Suppl. Nuovo Cim. 9, 426–438 (1952) CrossRefGoogle Scholar
  12. 12.
    I. Leiserson, S.G. Lipson, V. Sarafis, Superresolution in far-field imaging. Opt. Lett. 25, 209–211 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    M.V. Berry, S. Popescu, Evolution of quantum superoscillations, and optical superresolution without evanescent waves. J. Phys. A 39, 6965–6977 (2006) MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    J. Lindberg, Mathematical concepts of optical superresolution. J. Opt. 14, 083001 (2012). (23 pp.) ADSCrossRefGoogle Scholar
  15. 15.
    M.R. Dennis, A.C. Hamilton, J. Courtial, Superoscillation in speckle patterns. Opt. Lett. 33, 2976–2978 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    E.T.F. Rogers, J. Lindberg, T. Roy, S. Savo, J.E. Chad, M.R. Dennis, N.I. Zheludev, A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    M.V. Berry, M.R. Dennis, Natural superoscillations in monochromatic waves in D dimensions. J. Phys. A 42, 022003 (2009) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.H H Wills Physics LaboratoryBristolUK

Personalised recommendations