Weak Energy: Form and Function

  • Allen D. ParksEmail author
Conference paper


The equation of motion for a time-dependent weak value of a quantum mechanical observable contains a complex valued energy factor—the weak energy of evolution. This quantity is defined by the dynamics of the pre-selected and post-selected states which specify the observable’s weak value. It is shown that this energy: (i) is manifested as dynamical and geometric phases that govern the evolution of the weak value during the measurement process; (ii) satisfies the Euler-Lagrange equations when expressed in terms of Pancharatnam (P) phase and Fubini-Study (FS) metric distance; (iii) provides for a PFS stationary action principle for quantum state evolution; (iv) time translates correlation amplitudes; (v) generalizes the temporal persistence of state normalization; and (vi) obeys a time-energy uncertainty relation. A similar complex valued quantity—the pointed weak energy of an evolving quantum state—is also defined and several of its properties in PFS coordinates are discussed. It is shown that the imaginary part of the pointed weak energy governs the state’s survival probability and its real part is—to within a sign—the Mukunda-Simon geometric phase for arbitrary evolutions or the Aharonov-Anandan (AA) geometric phase for cyclic evolutions. Pointed weak energy gauge transformations and the PFS 1-form are defined and discussed and the relationship between the PFS 1-form and the AA connection 1-form is established. [Editors note: for a video of the talk given by Prof. Parks at the Aharonov-80 conference in 2012 at Chapman University, see]



The preparation of this contribution to the Festschrift commemorating Yakir Aharonov’s eightieth birthday was supported by a grant from the Naval Innovation in Science and Engineering program sponsored by the Naval Surface Warfare Center Dahlgren Division.


  1. 1.
    Y. Aharonov, D. Albert, D. Casher, L. Vaidman, Ann. N.Y. Acad. Sci. 480, 417 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    Y. Aharonov, D. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Aharonov, L. Vaidman, Phys. Rev. A 41, 11 (1990) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    N. Ritchie, J. Storey, R. Hulet, Phys. Rev. Lett. 66, 1107 (1991) ADSCrossRefGoogle Scholar
  5. 5.
    A. Parks, D. Cullin, D. Stoudt, Proc. R. Soc. A 454, 2997 (1998) ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    K. Resch, J. Lundeen, A. Steinberg, Phys. Lett. A 324, 125 (2004) ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Q. Wang, F. Sun, Y. Zhang, J. Li, Y. Huang, G. Guo, Phys. Rev. A 73, 023814 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    O. Hosten, P. Kwiat, Science 319, 787 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Yokota, T. Yamamoto, M. Koashi, N. Imoto, New J. Phys. 11, 033011 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    P. Dixon, D. Starling, A. Jordan, J. Howell, Phys. Rev. Lett. 102, 173601 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    I. Duck, P. Stevenson, E. Sudarshan, Phys. Rev. D 40, 2112 (1989) ADSCrossRefGoogle Scholar
  12. 12.
    R. Jozsa, Phys. Rev. A 76, 044103 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    A. Parks, J. Phys. A, Math. Theor. 41, 335305 (2008) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    N. Mukunda, R. Simon, Ann. Phys. 228, 205 (1993) MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    J. Anandan, Found. Phys. 21, 1265 (1991) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    A. Pati, J. Phys. A, Math. Gen. 25, L1001 (1992) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    J. Anandan, Y. Aharonov, Phys. Rev. D 38, 1863 (1988) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    A. Parks, J. Phys. A, Math. Gen. 33, 2555 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. 19.
    A. Parks, J. Phys. A, Math. Gen. 36, 7185 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Parks, J. Phys. A, Math. Gen. 39, 601 (2006) MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    A. Parks, J. Phys. A, Math. Theor. 40, 2137 (2007) MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    A. Pati, Phys. Rev. A 52, 2576 (1995) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Y. Aharonov, J. Anandan, Phys. Rev. Lett. 58, 1593 (1987) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations: Its Role in Mathematics and Physics (Van Nostrand, London, 1966), p. 163 zbMATHGoogle Scholar
  25. 25.
    A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics (Springer, Berlin, 2003), pp. 53–60 Google Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Electromagnetic and Sensor Systems DepartmentNaval Surface Warfare CenterDahlgrenUSA

Personalised recommendations