Advertisement

Paradoxes of the Aharonov-Bohm and the Aharonov-Casher Effects

  • Lev VaidmanEmail author

Abstract

For a believer in locality of Nature, the Aharonov-Bohm effect and the Aharonov-Casher effect are paradoxes. I discuss these and other Aharonov’s paradoxes and propose a local explanation of these effects. If the solenoid in the Aharonov-Bohm effect is treated quantum mechanically, the effect can be explained via local interaction between the field of the electron and the solenoid. I argue that the core of the Aharonov-Bohm and the Aharonov-Casher effects is that of quantum entanglement: the quantum wave function describes all systems together. [Editor’s note: for a video of the talk given by Prof. Vaidman at the Aharonov-80 conference in 2012 at Chapman University, see quantum.chapman.edu/talk-21.]

Notes

Acknowledgements

I thank Shmuel Nussinov for useful discussions. This work has been supported in part by the Binational Science Foundation Grant No. 32/08 and the Israel Science Foundation Grant No. 1125/10,

References

  1. 1.
    Y. Aharonov, D. Albert, Phys. Rev. D 21, 3316 (1980) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Y. Aharonov, D. Albert, Phys. Rev. D 24, 359 (1981) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Aharonov, D. Albert, L. Vaidman, Phys. Rev. D 34, 1805 (1986) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    L. Vaidman, Phys. Rev. Lett. 90, 010402 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    H. Everett III, Rev. Mod. Phys. 29, 454 (1957) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    L. Vaidman, Many-worlds interpretation of quantum mechanics, in Stan. Enc. Phil., ed. by E.N. Zalta (2002). http://plato.stanford.edu/entries/qm-manyworlds/ Google Scholar
  7. 7.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959) MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    P. Grangier, G. Roger, A. Aspect, Europhys. Lett. 1, 173 (1986) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Aharonov, L. Vaidman, Phys. Rev. A 61, 052108 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    T. Boyer, Phys. Rev. A 36, 5083 (1987) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Aharonov, P. Pearle, L. Vaidman, Phys. Rev. A 37, 4052 (1988) ADSCrossRefGoogle Scholar
  13. 13.
    L. Vaidman, Am. J. Phys. 58, 978 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    W. Shockley, R.P. James, Phys. Rev. Lett. 18, 876 (1967) ADSCrossRefGoogle Scholar
  15. 15.
    M. Mansuripur, Phys. Rev. Lett. 108, 193901 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    L. Vaidman, Phys. Rev. A 86, 040101 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    L. Vaidman, Aharonov-bohm effect, in Hebrew Encyclopedia (1994), supplementary volume III (in Hebrew) Google Scholar
  18. 18.
    Y. Aharonov, T. Kaufherr, S. Nussinov, J. Phys. Conf. Ser. 173, 012020 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    A. Tonomura et al., Phys. Rev. Lett. 56, 792 (1986) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityTel-AvivIsrael
  2. 2.Institute for Quantum StudiesChapman UniversityOrangeUSA

Personalised recommendations