PR-Box Correlations Have No Classical Limit

  • Daniel RohrlichEmail author


One of Yakir Aharonov’s endlessly captivating physics ideas is the conjecture that two axioms, namely relativistic causality (“no superluminal signalling”) and nonlocality, so nearly contradict each other that a unique theory—quantum mechanics—reconciles them. But superquantum (or “PR-box”) correlations imply that quantum mechanics is not the most nonlocal theory (in the sense of nonlocal correlations) consistent with relativistic causality. Let us consider supplementing these two axioms with a minimal third axiom: there exists a classical limit in which macroscopic observables commute. That is, just as quantum mechanics has a classical limit, so must any generalization of quantum mechanics. In this classical limit, PR-box correlations violate relativistic causality. Generalized to all stronger-than-quantum bipartite correlations, this result is a derivation of Tsirelson’s bound without assuming quantum mechanics. [Editors note: for a video of the talk given by Dr. Rohrlich at the Aharonov-80 conference in 2012 at Chapman University, see]


Quantum Mechanic Relativistic Causality Quantum Correlation Uncertainty Principle Classical Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



For over two decades I have had the great good fortune to work with Professor Yakir Aharonov, learning from his penetrating questions, his mastery of quantum and statistical fluctuations, his subtle formulations such as weak measurement and weak values, and his countless other insights.


  1. 1.
    Y. Aharonov, D. Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed (Wiley-VCH, Weinheim, 2005) CrossRefGoogle Scholar
  2. 2.
    H. Poincaré, Sechs Vorträge aus der Reinen Mathematik und Mathematischen Physik (Teubner, Leipzig, 1910). (Transl. and cited in A. Pais, ‘Subtle is the Lord...’: the Science and Life of Albert Einstein (Oxford University Press, New York, 1982), pp. 167–168.) Google Scholar
  3. 3.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959) MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    J.S. Bell, Physics 1, 195 (1964) Google Scholar
  5. 5.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Aharonov, H. Pendleton, A. Petersen, Int. J. Theor. Phys. 2, 213 (1969) CrossRefGoogle Scholar
  7. 7.
    Y. Aharonov, in Proc. of the Int. Symp. on the Foundations of Quantum Mechanics, Tokyo (1983), p. 10. See also Aharonov, Y. and Rohrlich, D., op. cit., Chaps. 5, 6 and 13 Google Scholar
  8. 8.
    A. Shimony, in Foundations of Quantum Mechanics in Light of the New Technology, ed. by S. Kamefuchi et al. (Japan Physical Society, Tokyo, 1983), p. 225 Google Scholar
  9. 9.
    A. Shimony, in Quantum Concepts of Space and Time, ed. by R. Penrose, C. Isham (Clarendon Press, Oxford, 1986), p. 182 Google Scholar
  10. 10.
    B.S. Tsirelson (Cirel’son), Lett. Math. Phys. 4, 93 (1980) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    S. Popescu, D. Rohrlich, Found. Phys. 24, 379 (1994). (See also D. Rohrlich, The Frontiers Collection, in Probability in Physics, ed. by Y. Ben-Menahem, M. Hemmo (Springer, Berlin, 2012), pp. 187–200.) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    W. van Dam, Nonlocality & communication complexity. Ph.D. thesis, Oxford University (2000) Google Scholar
  13. 13.
    W. van Dam, Preprint (2005). quant-ph/0501159
  14. 14.
    D. Dieks, Phys. Rev. A 66, 062104 (2002) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    H. Buhrman, S. Massar, Phys. Rev. A 72, 052103 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    J. Barrett, S. Pironio, Phys. Rev. Lett. 95, 140401 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    G. Brassard, H. Buhrman, N. Linden, A.A. Méthot, A. Tapp, F. Unger, Phys. Rev. Lett. 96, 250401 (2006) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    J. Barrett, Phys. Rev. A 75, 032304 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    D. Gross, M. Müller, R. Colbeck, O.C.O. Dahlsten, Phys. Rev. Lett. 104, 080402 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    M. Pawłowski et al., Nature 461, 1101 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    N. Bohr, in Albert Einstein: Philosopher–Scientist, ed. by P.A. Schilpp (Tudor Publ. Co., New York, 1951), pp. 201–241 Google Scholar
  22. 22.
    Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988). (See also, Y. Aharonov, D. Rohrlich, op. cit., Chaps. 16–17) ADSCrossRefGoogle Scholar
  23. 23.
    D. Rohrlich, Stronger-than-quantum bipartite correlations violate relativistic causality in the classical limit. Phys. Rev. Lett., submitted Google Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Department of PhysicsBen Gurion University of the NegevBeershebaIsrael

Personalised recommendations