Advertisement

Quantum Correlations in Newtonian Space and Time:

Faster than Light Communication or Nonlocality
  • Nicolas GisinEmail author

Abstract

We investigate possible explanations of quantum correlations that satisfy the principle of continuity, which states that everything propagates gradually and continuously through space and time. In particular, following (Bancal et al. in Nat. Phys., 2012) we show that any combination of local common causes and direct causes satisfying this principle, i.e. propagating at any finite speed, leads to signalling. This is true even if the common and direct causes are allowed to propagate at a supraluminal-but-finite speed defined in a Newtonian-like privileged universal reference frame. Consequently, either there is supraluminal communication or the conclusion that Nature is nonlocal (i.e. discontinuous) is unavoidable. [Editor’s note: for a video of the talk given by Prof. Gisin at the Aharonov-80 conference in 2012 at Chapman University, see quantum.chapman.edu/talk-28.]

Keywords

Quantum Theory Quantum Correlation Bell Inequality Direct Causation Quantum Nonlocality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This article greatly profited from numerous exchanges with my co-authors of [2] and from comment by Rob Thew and many colleagues over the years. This work has been supported by the ERC-AG grant QORE, the CHIST-ERA DIQIP project, and by the Swiss NCCR Quantum Science and Technology—QSIT.

References

  1. 1.
    J.S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge University Press, Cambridge, 2004) CrossRefGoogle Scholar
  2. 2.
    J.D. Bancal, S. Pironio, A. Acin, Y.C. Liang, V. Scarani, N. Gisin, Nat. Phys. 8, 867–870 (2012) CrossRefGoogle Scholar
  3. 3.
    Ph.H. Eberhard, A realistic model for Quantum Theory with a locality property, in Quantum Theory and Pictures of Reality, ed. by W. Schommers (Springer, New York, 1989), pp. 169–215 CrossRefGoogle Scholar
  4. 4.
    A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    W. Tittel, J. Brendel, N. Gisin, H. Zbinden, Phys. Rev. Lett. 81, 3563–3566 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998) MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    C. Lineweaver et al., Astrophys. J. 470, 38 (1996). http://pdg.lbl.gov ADSCrossRefGoogle Scholar
  8. 8.
    J.S. Bell, La nouvelle cuisine, in [1] Google Scholar
  9. 9.
    J.S. Bell, in The Ghost in the Atom, ed. by P.C.W. Davies, J.R. Brown (Cambridge University Press, London, 1993), pp. 45–57 Google Scholar
  10. 10.
    D. Bohm, B.J. Hiley, The Undivided Universe (Routledge, London, 1993) (p. 347 of the paperback edition) Google Scholar
  11. 11.
    N. Gisin, V. Scarani, W. Tittel, H. Zbinden, 100 years of Q theory. Proc. Ann. Phys. 9, 831–842 (2000) ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    N. Gisin, V. Scarani, W. Tittel, H. Zbinden. quant-ph/0009055
  13. 13.
    A. Stefanov, H. Zbinden, N. Gisin, Phys. Rev. Lett. 88, 120404 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    N. Gisin, Sundays in a quantum engineer’s life, in Proceedings of the Conference in Commemoration of John S. Bell, Vienna, 10–14 November (2000) Google Scholar
  15. 15.
    V. Scarani, W. Tittel, H. Zbinden, N. Gisin, Phys. Lett. A 276, 1–7 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    D. Salart, A. Baas, C. Branciard, N. Gisin, H. Zbinden, Nature 454, 861 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    B. Cocciaro, S. Faetti, L. Fronzoni, Phys. Lett. A 375, 379 (2011) ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    V. Scarani, N. Gisin, Phys. Lett. A 295, 167 (2002) MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. 19.
    V. Scarani, N. Gisin, Braz. J. Phys. 35, 2A (2005) CrossRefGoogle Scholar
  20. 20.
    L.C. Ryff. arXiv:0903.1076
  21. 21.
    N. Linden, S. Popescu, W.K. Wootters, Phys. Rev. Lett. 89, 207901 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    N. Linden, W.K. Wootters, Phys. Rev. Lett. 89, 277906 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    L.E. Würflinger, J.D. Bancal, A. Acin, N. Gisin, T. Vertesi, Phys. Rev. A 86, 032117 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    S. Coretti, E. Hänggi, S. Wolf, Phys. Rev. Lett. 107, 100402 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    D. Mermin, Am. J. Phys. 49, 940 (1981) ADSCrossRefGoogle Scholar
  26. 26.
    T. Mauldin, Quantum Non-locality and Relativity: Metaphysical Intimations of Modern Physics (Blackwell Publishers, Oxford, 2002) Google Scholar
  27. 27.
    T. Norsen, John S. Bell’s concept of local causality. Am. J. Phys. 79, 1261–1275 (2012) ADSGoogle Scholar
  28. 28.
    N. Gisin, Found. Phys. 42, 80–85 (2012) MathSciNetADSCrossRefzbMATHGoogle Scholar
  29. 29.
    T. Barnea Master thesis, University of Geneva (2012). arXiv:1304.1812
  30. 30.
    M.J.W. Hall, Phys. Rev. Lett. 105, 250404 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    J. Barrett, N. Gisin, Phys. Rev. Lett. 106, 100406 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    I. Newton, Papers & Letters on Natural Philosophy and Related Documents (Harvard University Press, Cambridge, 1958), p. 302. Edited, with a general introduction, by Bernard Cohen, assisted by Robert E. Schofield Google Scholar
  33. 33.
    J.S. Bell, How to teach special relativity, in [1] Google Scholar
  34. 34.
    B. Cocciaro. arXiv:1209.3685
  35. 35.
    F. Reuse, Ann. Phys. 154, 161 (1984) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    P. Caban, J. Rembielinski, Phys. Rev. A 59, 4187 (1999) ADSCrossRefGoogle Scholar
  37. 37.
    N. Gisin, Quantum nonlocality: how does nature do it? Science 326, 1357–1358 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Group of Applied PhysicsUniversity of GenevaGeneva 4Switzerland

Personalised recommendations