Skip to main content

The Complex Nature of Soft Tissue Sarcomas, Including Retroperitoneal Sarcomas

  • Chapter
  • 595 Accesses

Part of the book series: Updates in Surgery ((UPDATESSURG))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grizzi F, Di Ieva A, Russo C et al (2006) Cancer initiation and progression: an unsimplifiable complexity. Theor Biol Med Model 3:37

    Article  PubMed  PubMed Central  Google Scholar 

  2. Widschwendter M, Jones A, Evans I et al; FORECEE (4C) Consortium (2018) Epigenomebased cancer risk prediction: rationale, opportunities and challenges. Nat Rev Clin Oncol 15(5):292–309

    PubMed  Google Scholar 

  3. Halcrow PW, Dancer M, Panteah M et al (2016) Molecular changes associated with tumor initiation and progression of soft tissue sarcomas: targeting the genome and epigenome. Prog Mol Biol Transl Sci 144:323–380

    Article  CAS  PubMed  Google Scholar 

  4. Strauss DC, Hayes AJ, Thomas JM (2011) Retroperitoneal tumours: review of management. Ann R Coll Surg Engl 93(4):275–280

    Article  PubMed  PubMed Central  Google Scholar 

  5. Porpiglia AS, Reddy SS, Farma JM (2016) Retroperitoneal sarcomas. Surg Clin North Am 96(5):993–1001

    Article  PubMed  Google Scholar 

  6. Clark MA, Fisher C, Judson I, Thomas JM (2005) Soft-tissue sarcomas in adults. N Engl J Med 353(7):701–711

    Article  CAS  PubMed  Google Scholar 

  7. Soini Y (2016) Epigenetic and genetic changes in soft tissue sarcomas: a review. APMIS 124(11):925–934

    Article  PubMed  Google Scholar 

  8. Sigston EAW, Williams BRG (2017) An emergence framework of carcinogenesis. Front Oncol 7:198

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gérard C, Goldbeter A (2016) Dynamics of the mammalian cell cycle in physiological and pathological conditions. Wiley Interdiscip Rev Syst Biol Med 8(2):140–156

    Article  PubMed  Google Scholar 

  10. Grizzi F, Chiriva-Internati M (2006) Cancer: looking for simplicity and finding complexity. Cancer Cell Int 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sell S, Nicolini A, Ferrari P, Biava PM (2016) Cancer: a problem of developmental biology; scientific evidence for reprogramming and differentiation therapy. Curr Drug Targets 17(10):1103–1110

    Article  CAS  PubMed  Google Scholar 

  12. Segal NH, Pavlidis P, Antonescu CR et al (2003) Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol 163(2):691–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strong LC, Williams WR, Tainsky MA (1992) The Li-Fraumeni syndrome: from clinical epidemiology to molecular genetics. Am J Epidemiol 135(2):190–199

    Article  CAS  PubMed  Google Scholar 

  14. Stratton MR, Moss S, Warren W et al (1990) Mutation of the p53 gene in human soft tissue sarcomas: association with abnormalities of the RB1 gene. Oncogene 5(9):1297–1301

    CAS  PubMed  Google Scholar 

  15. Kruzelock RP, Hansen MF (1995) Molecular genetics and cytogenetics of sarcomas. Hematol Oncol Clin North Am 9(3):513–540

    Article  CAS  PubMed  Google Scholar 

  16. Skapek SX, Chui CH (2000) Cytogenetics and the biologic basis of sarcomas. Curr Opin Oncol 12(4):315–322

    Article  CAS  PubMed  Google Scholar 

  17. Karpeh MS, Brennan MF, Cance WG et al (1995) Altered patterns of retinoblastoma gene product expression in adult soft-tissue sarcomas. Br J Cancer 72(4):986–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao X, Garbutt CC, Hornicek F et al (2018) Advances in chromosomal translocations and fusion genes in sarcomas and potential therapeutic applications. Cancer Treat Rev 63:61–70

    Article  CAS  PubMed  Google Scholar 

  19. Jones KB (2018) What’s in a name? Cell fate reprogramming in sarcomagenesis. Cancer Cell 33(1):5–7

    Article  CAS  PubMed  Google Scholar 

  20. Drummond CJ, Hanna JA, Garcia MR et al (2018) Hedgehog pathway drives fusionnegative rhabdomyosarcoma initiated from non-myogenic endothelial progenitors. Cancer Cell 33(1):108–124.e5

    Article  CAS  PubMed  Google Scholar 

  21. Oda Y, Yamamoto H, Kohashi K et al (2017) Soft tissue sarcomas: from a morphological to a molecular biological approach. Pathol Int 67(9):435–446

    Article  CAS  PubMed  Google Scholar 

  22. Hamacher R, Bauer S (2017) Preclinical models for translational sarcoma research. Curr Opin Oncol 29(4):275–285

    Article  CAS  PubMed  Google Scholar 

  23. Ramón y Cajal S, Castellvi J, Hümmer S et al (2018) Beyond molecular tumor heterogeneity: protein synthesis takes control. Oncogene 37(19):2490–2501

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chowell D, Napier J, Gupta R et al (2018) Modeling the subclonal evolution of cancer cell populations. Cancer Res 78(3):830–839

    Article  CAS  PubMed  Google Scholar 

  25. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Osman S, Lehnert BE, Elojeimy S et al (2013) A comprehensive review of the retro-peritoneal anatomy, neoplasms, and pattern of disease spread. Curr Probl Diagn Radiol 42(5):191–208

    Article  PubMed  Google Scholar 

  27. Loewenstein S, Lubezky N, Nizri E et al (2016) Adipose-induced retroperitoneal soft tissue sarcoma tumorigenesis: a potential crosstalk between sarcoma and fat cells. Mol Cancer Res 14(12):1254–1265

    Article  CAS  PubMed  Google Scholar 

  28. Grizzi F, Chiriva-Internati M (2005) The complexity of anatomical systems. Theor Biol Med Model 2:26

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ogino J, Asanuma H, Hatanaka Y et al (2013) Validity and reproducibility of Ki-67 assessment in gastrointestinal stromal tumors and leiomyosarcomas. Pathol Int 63(2):102–107

    Article  PubMed  Google Scholar 

  30. Ehnman M, Larsson O (2015) Microenvironmental targets in sarcoma. Front Oncol 5:248

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tomlinson J, Barsky SH, Nelson S et al (1999) Different patterns of angiogenesis in sarcomas and carcinomas. Clin Cancer Res 5(11):3516–3522

    CAS  PubMed  Google Scholar 

  32. West CC, Brown NJ, Mangham DC et al (2005) Microvessel density does not predict outcome in high grade soft tissue sarcoma. Eur J Surg Oncol 31(10):1198–1205

    Article  CAS  PubMed  Google Scholar 

  33. D’Angelo SP, Shoushtari AN, Agaram NP et al (2015) Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum Pathol 46(3):357–365

    Article  PubMed  Google Scholar 

  34. Berghuis D, Santos SJ, Baelde HJ et al (2011) Pro-inflammatory chemokine-chemokine receptor interactions within the Ewing sarcoma microenvironment determine CD8(+) T-lymphocyte infiltration and affect tumour progression. J Pathol 223(3):347–357

    Article  CAS  PubMed  Google Scholar 

  35. Sorbye SW, Kilvaer T, Valkov A et al (2011) Prognostic impact of lymphocytes in soft tissue sarcomas. PLoS One 6(1):e14611

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tseng WW, Demicco EG, Lazar AJ et al (2012) Lymphocyte composition and distribution in inflammatory, well-differentiated retroperitoneal liposarcoma: clues to a potential adaptive immune response and therapeutic implications. Am J Surg Pathol 36(6):941–944

    Article  PubMed  Google Scholar 

  37. Blees A, Januliene D, Hofmann T et al (2017) Structure of the human MHC-I peptideloading complex. Nature 551(7681):525–528

    CAS  PubMed  Google Scholar 

  38. Berghuis D, de Hooge AS, Santos SJ et al (2009) Reduced human leukocyte antigen expression in advanced-stage Ewing sarcoma: implications for immune recognition. J Pathol 218(2):222–231

    Article  CAS  PubMed  Google Scholar 

  39. Garcia-Lora A, Martinez M, Algarra I et al (2003) MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer 106(4):521–527

    Article  CAS  PubMed  Google Scholar 

  40. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    Article  CAS  PubMed  Google Scholar 

  41. Leone P, Shin EC, Perosa F et al (2013) MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 105(16):1172–1187

    Article  CAS  PubMed  Google Scholar 

  42. Bukur J, Jasinski S, Seliger B (2012) The role of classical and non-classical HLA class I antigens in human tumors. Semin Cancer Biol 22(4):350–358

    Article  CAS  PubMed  Google Scholar 

  43. del Campo AB, Carretero J, Aptsiauri N, Garrido F (2012) Targeting HLA class I expression to increase tumor immunogenicity. Tissue Antigens 79(3):147–154

    Article  PubMed  Google Scholar 

  44. Seliger B, Ritz U, Ferrone S (2006) Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation. Int J Cancer 118(1):129–138

    Article  CAS  PubMed  Google Scholar 

  45. Heemels MT, Ploegh H (1995) Generation, translocation, and presentation of MHC class I-restricted peptides. Annu Rev Biochem 64:463–491

    Article  CAS  PubMed  Google Scholar 

  46. Ortmann B, Copeman J, Lehner PJ et al (1997) A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277(5330):1306–1309

    Article  CAS  PubMed  Google Scholar 

  47. Lehner PJ, Surman MJ, Cresswell P (1998) Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line .220. Immunity 8(2):221–231

    Article  CAS  PubMed  Google Scholar 

  48. Pamer E, Cresswell P (1998) Mechanisms of MHC class I–restricted antigen processing. Annu Rev Immunol 16:323–358

    Article  CAS  PubMed  Google Scholar 

  49. Peh CA, Burrows SR, Barnden M et al (1998) HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 8(5):531–542

    Article  CAS  PubMed  Google Scholar 

  50. Barnden MJ, Purcell AW, Gorman JJ, McCluskey J (2000) Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J Immunol 165(1):322–330

    Article  CAS  PubMed  Google Scholar 

  51. Garbi N, Tan P, Diehl AD et al (2000) Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol 1(3):234–238

    Article  CAS  PubMed  Google Scholar 

  52. Grandea AG 3rd, Golovina TN, Hamilton SE et al (2000) Impaired assembly yet normal trafficking of MHC class I molecules in tapasin mutant mice. Immunity 13(2):213–222

    Article  CAS  PubMed  Google Scholar 

  53. Purcell AW, Gorman JJ, Garcia-Peydro M et al (2001) Quantitative and qualitative influences of tapasin on the class I peptide repertoire. J Immunol 166(2):1016–1027

    Article  CAS  PubMed  Google Scholar 

  54. Ogino T, Bandoh N, Hayashi T et al (2003) Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin Cancer Res 9(11):4043–4051

    CAS  PubMed  Google Scholar 

  55. Anichini A, Mortarini R, Nonaka D et al (2006) Association of antigen-processing machinery and HLA antigen phenotype of melanoma cells with survival in American Joint Committee on Cancer stage III and IV melanoma patients. Cancer Res 66(12):6405–6411

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Komohara Y, Domenick N et al (2012) Expression of antigen processing and presenting molecules in brain metastasis of breast cancer. Cancer Immunol Immunother 61(6):789–801

    Article  CAS  PubMed  Google Scholar 

  57. Seliger B (2008) Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 57(11):1719–1726

    Article  CAS  PubMed  Google Scholar 

  58. Ogino T, Shigyo H, Ishii H et al (2006) HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 66(18):9281–9289

    Article  CAS  PubMed  Google Scholar 

  59. Campoli M, Chang CC, Ferrone S (2002) HLA class I antigen loss, tumor immune escape and immune selection. Vaccine 20(Suppl 4):A40–A45

    Article  CAS  PubMed  Google Scholar 

  60. Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12(1):3–13

    Article  CAS  PubMed  Google Scholar 

  61. Chang CC, Campoli M, Ferrone S (2003) HLA class I defects in malignant lesions: what have we learned? Keio J Med 52(4):220–229

    Article  CAS  PubMed  Google Scholar 

  62. Atkins D, Ferrone S, Schmahl GE et al (2004) Down-regulation of HLA class I antigen processing molecules: an immune escape mechanism of renal cell carcinoma? J Urol 171(2 Pt 1):885–889

    Article  CAS  PubMed  Google Scholar 

  63. Campoli M, Chang CC, Oldford SA et al (2004) HLA antigen changes in malignant tumors of mammary epithelial origin: molecular mechanisms and clinical implications. Breast Dis 20:105–125

    Article  CAS  PubMed  Google Scholar 

  64. Facoetti A, Nano R, Zelini P et al (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11(23):8304–8311

    Article  CAS  PubMed  Google Scholar 

  65. Ferris RL, Hunt JL, Ferrone S (2005) Human leukocyte antigen (HLA) class I defects in head and neck cancer: molecular mechanisms and clinical significance. Immunol Res 33(2):113–133

    Article  CAS  PubMed  Google Scholar 

  66. Kloor M, Becker C, Benner A et al (2005) Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res 65(14):6418–6424

    Article  CAS  PubMed  Google Scholar 

  67. Meissner M, Reichert TE, Kunkel M et al (2005) Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 11(7):2552–2560

    Article  CAS  PubMed  Google Scholar 

  68. Raffaghello L, Prigione I, Bocca P et al (2005) Multiple defects of the antigen-processing machinery components in human neuroblastoma: immunotherapeutic implications. Oncogene 24(29):4634–4644

    Article  CAS  PubMed  Google Scholar 

  69. Vitale M, Pelusi G, Taroni B et al (2005) HLA class I antigen down-regulation in primary ovary carcinoma lesions: association with disease stage. Clin Cancer Res 11(1):67–72

    CAS  PubMed  Google Scholar 

  70. Bangia N, Ferrone S (2006) Antigen presentation machinery (APM) modulation and soluble HLA molecules in the tumor microenvironment: do they provide tumor cells with escape mechanisms from recognition by cytotoxic T lymphocytes? Immunol Invest 35(3– 4):485–503

    Article  CAS  PubMed  Google Scholar 

  71. Chang CC, Ogino T, Mullins DW et al (2006) Defective human leukocyte antigen class I-associated antigen presentation caused by a novel beta2-microglobulin loss-of-function in melanoma cells. J Biol Chem 281(27):18763–18773

    Article  CAS  PubMed  Google Scholar 

  72. Ferris RL, Whiteside TL, Ferrone S (2006) Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res 12(13):3890–3895

    Article  CAS  PubMed  Google Scholar 

  73. López-Albaitero A, Nayak JV, Ogino T et al (2006) Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. J Immunol 176(6):3402–3409

    Article  PubMed  Google Scholar 

  74. Chang CC, Ferrone S (2007) Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother 56(2):227–236

    Article  CAS  PubMed  Google Scholar 

  75. Seliger B, Stoehr R, Handke D et al (2010) Association of HLA class I antigen abnormalities with disease progression and early recurrence in prostate cancer. Cancer Immunol Immunother 59(4):529–540

    Article  CAS  PubMed  Google Scholar 

  76. Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27(45):5869–5885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. del Campo AB, Kyte JA, Carretero J et al (2014) Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer 134(1):102–113

    Article  PubMed  Google Scholar 

  78. Fairweather M, Gonzalez RJ, Strauss D, Raut CP (2018) Current principles of surgery for retroperitoneal sarcomas. J Surg Oncol 117(1):33–41

    Article  PubMed  Google Scholar 

  79. Segal NH, Blachere NE, Guevara-Patiño JA et al (2005) Identification of cancer-testis genes expressed by melanoma and soft tissue sarcoma using bioinformatics. Cancer Immun 5(1):2

    PubMed  Google Scholar 

  80. Roszik J, Wang WL, Livingston JA et al (2017) Overexpressed PRAME is a potential immunotherapy target in sarcoma subtypes. Clin Sarcoma Res 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pollack SM, Ingham M, Spraker MB, Schwartz GK (2018) Emerging targeted and immune-based therapies in sarcoma. J Clin Oncol 36(2):125–135

    Article  PubMed  Google Scholar 

  82. Salmaninejad A, Zamani MR, Pourvahedi M et al (2016) Cancer/testis antigens: expression, regulation, tumor invasion, and use in immunotherapy of cancers. Immunol Invest 45(7):619–640

    Article  CAS  PubMed  Google Scholar 

  83. Chiriva-Internati M, Grizzi F, Bright RK, Martin Kast W (2004) Cancer immunotherapy: avoiding the road to perdition. J Transl Med 2(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  84. Iura K, Maekawa A, Kohashi K et al (2017) Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1. Hum Pathol 61:130–139

    Article  CAS  PubMed  Google Scholar 

  85. Iura K, Kohashi K, Hotokebuchi Y et al (2015) Cancer-testis antigens PRAME and NY-ESO-1 correlate with tumour grade and poor prognosis in myxoid liposarcoma. J Pathol Clin Res 1(3):144–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Iura K, Kohashi K, Ishii T et al (2017) MAGEA4 expression in bone and soft tissue tumors: its utility as a target for immunotherapy and diagnostic marker combined with NY-ESO-1. Virchows Arch 471(3):383–392

    Article  CAS  PubMed  Google Scholar 

  87. Groisberg R, Hong DS, Behrang A et al (2017) Characteristics and outcomes of patients with advanced sarcoma enrolled in early phase immunotherapy trials. J Immunother Cancer 5(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zheng B, Ren T, Huang Y, Guo W (2018) Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3. Biochem Biophys Res Commun 495(2):1695–1701

    Article  CAS  PubMed  Google Scholar 

  89. Machado I, López-Guerrero JA, Scotlandi K et al (2018) Immunohistochemical analysis and prognostic significance of PD-L1, PD-1, and CD8+ tumor-infiltrating lymphocytes in Ewing’s sarcoma family of tumors (ESFT). Virchows Arch 472(5):815–824

    Article  CAS  PubMed  Google Scholar 

  90. Boxberg M, Steiger K, Lenze U et al (2018) PD-L1 and PD-1 and characterization of tumorinfiltrating lymphocytes in high grade sarcomas of soft tissue — prognostic implications and rationale for immunotherapy. Oncoimmunology 7(3):e1389366

    Article  PubMed  Google Scholar 

  91. Zhu Z, Jin Z, Zhang M et al (2017) Prognostic value of programmed death-ligand 1 in sarcoma: a meta-analysis. Oncotarget 8(35):59570–59580

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Grizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag Italia

About this chapter

Cite this chapter

Grizzi, F., Borroni, E.M., Qehajaj, D., Stifter, S., Chiriva-Internati, M., Cananzi, F.C.M. (2019). The Complex Nature of Soft Tissue Sarcomas, Including Retroperitoneal Sarcomas. In: Quagliuolo, V., Gronchi, A. (eds) Current Treatment of Retroperitoneal Sarcomas. Updates in Surgery. Springer, Milano. https://doi.org/10.1007/978-88-470-3980-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-3980-3_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-3979-7

  • Online ISBN: 978-88-470-3980-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics