Advertisement

Metodi numerici per problemi ai limiti stazionari ed evolutivi

  • Alfio Quarteroni
  • Fausto Saleri
  • Paola Gervasio
Chapter
  • 1.1k Downloads
Part of the UNITEXT book series (UNITEXT, volume 105)

Astratto

Questo capitolo tratta un caposaldo del Calcolo Scientifico, quello della risoluzione numerica di problemi ai limiti, stazionari e evolutivi. Introduciamo le classiche tecniche alle differenze finite, seguite da quelle basate sul metodo agli elementi finiti. Applichiamo questi metodi al caso dei problemi ai limiti ellitrtici, parabolici ed iperbolici. Ricordiamo i principali risultati di consistenza, stabilità, convergenza e indichiamo come affrontare la risoluzione numerica dei problemi algebrici corrispondenti. Vengono proposti svariati esempi, prima di concludere il capitolo con una robusta serie di esercizi.

Riferimenti bibliografici

  1. [BM92]
    Bernardi, C., Maday, Y.: Approximations Spectrales des Problémes aux Limites Elliptiques. Springer, Paris (1992) zbMATHGoogle Scholar
  2. [Bra97]
    Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (1997) CrossRefzbMATHGoogle Scholar
  3. [BS01]
    Babuska, I., Strouboulis, T.: The Finite Element Method and its Reliability. Numerical Mathematics and Scientific Computation. Clarendon Press/Oxford University Press, New York (2001) zbMATHGoogle Scholar
  4. [BS08]
    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008) CrossRefzbMATHGoogle Scholar
  5. [CFL28]
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928) MathSciNetCrossRefzbMATHGoogle Scholar
  6. [CHQZ06]
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Scientific Computation. Springer, Berlin (2006) zbMATHGoogle Scholar
  7. [CHQZ07]
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation. Springer, Heidelberg (2007) zbMATHGoogle Scholar
  8. [EEHJ96]
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996) zbMATHGoogle Scholar
  9. [EG04]
    Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences., vol. 159. Springer, New York (2004) zbMATHGoogle Scholar
  10. [Eva98]
    Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (1998) zbMATHGoogle Scholar
  11. [Fun92]
    Funaro, D.: Polynomial Approximation of Differential Equations. Springer, Berlin (1992) zbMATHGoogle Scholar
  12. [GR96]
    Godlewski, E., Raviart, P.-A.: Hyperbolic Systems of Conservations Laws. Springer, New York (1996) CrossRefzbMATHGoogle Scholar
  13. [Hir88]
    Hirsh, C.: Numerical Computation of Internal and External Flows. Wiley, Chichester (1988) Google Scholar
  14. [IK66]
    Isaacson, E., Keller, H.: Analysis of Numerical Methods. Wiley, New York (1966) zbMATHGoogle Scholar
  15. [Joh90]
    Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1990) Google Scholar
  16. [Krö98]
    Kröner, D.: Finite volume schemes in multidimensions. In: Numerical Analysis 1997 (Dundee). Pitman Research Notes in Mathematics Series, pp. 179–192. Longman, Harlow (1998) Google Scholar
  17. [KS99]
    Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for CFD. Oxford University Press, New York (1999) zbMATHGoogle Scholar
  18. [Lan03]
    Langtangen, H.: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming. Springer, Berlin (2003) zbMATHGoogle Scholar
  19. [LeV02]
    LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002) CrossRefzbMATHGoogle Scholar
  20. [QSS07]
    Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Texts in Applied Mathematics. Springer, Berlin (2007) CrossRefzbMATHGoogle Scholar
  21. [QSSG14]
    Quarteroni, A., Sacco, R., Saleri, F., Gervasio, P.: Matematica Numerica, 4a edn. Springer, Milano (2014) CrossRefzbMATHGoogle Scholar
  22. [Qua16]
    Quarteroni, A.: Modellistica Numerica per Problemi Differenziali, 6a edn. Springer, Milano (2016) zbMATHGoogle Scholar
  23. [QV94]
    Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994) zbMATHGoogle Scholar
  24. [Sal10]
    Salsa, S.: Equazioni a Derivate Parziali. Metodi, Modelli e Applicazioni, 3a edn. Springer, Milano (2010) CrossRefzbMATHGoogle Scholar
  25. [Str07]
    Stratton, J.: Electromagnetic Theory. Wiley/IEEE Press, Hoboken/New Jersey (2007) zbMATHGoogle Scholar
  26. [Tho06]
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 25. Springer, Berlin (2006) zbMATHGoogle Scholar
  27. [TW98]
    Tveito, A., Winther, R.: Introduction to Partial Differential Equations. A Computational Approach. Springer, Berlin (1998) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia Srl. 2017

Authors and Affiliations

  • Alfio Quarteroni
    • 2
    • 1
  • Fausto Saleri
    • 3
  • Paola Gervasio
    • 4
  1. 1.École Polytechnique Fédérale (EPFL)LausanneSwitzerland
  2. 2.Politecnico di MilanoMilanItaly
  3. 3.MOXPolitecnico di MilanoMilanItaly
  4. 4.DICATAMUniversità degli Studi di BresciaBresciaItaly

Personalised recommendations