Skip to main content

Elasticity, viscosity and plasticity in lung parenchyma

  • Chapter
Applied Physiology in Respiratory Mechanics

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

Abstract

Mechanical modelling of lung parenchymal behaviour has tried to define some of its characteristic features by using different combinations of basic rheological elements, arranged in multiple ways. Springs, dashpots and dry frictions are usually combined to describe mechanical lung properties. Static and dynamic properties of lung parenchyma point to the behaviour of the elastic storage and the frictional dissipation of energy, respectively, under different conditions of breathing frequency, lung volume, tidal volume or special manoeuvres (flow interruption, forced oscillation, etc.). The object of modelling lung mechanical behaviour is to determine, as far as possible, the relative significance of different rheologic phenomena and to find the simplest way for a global determination of lung mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Setnikar I, Meschia G (1952) ProprietĆ  elastiche del polmone e di modelli meccaniche. Arch Fisiol 52: 288

    Google ScholarĀ 

  2. Alfrey T Jr (1948) Mechanical behaviour of high polymers. Interscience, New York

    Google ScholarĀ 

  3. Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67: 2408ā€“2419

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Moretto A, Dallaire M, Romero PV, Ludwig M (1993) Effect of elastase on oscillation mechanics of lung parenchymal strip. Amer Rev Respir Dis 147 [Suppl]: A970

    Google ScholarĀ 

  5. Hoppin FG Jr, Hildebrandt J (1977) Mechanical properties of the lung, in J.B. West, Bioengineering aspects of the lung. Marcel Dekker Inc, New York, pp 83ā€“162

    Google ScholarĀ 

  6. Fung YCB (1981) Biomechanics. Mechanical properties of living tissues. Springer Verlag, New York

    Google ScholarĀ 

  7. Goerk J, Clements JA (1986) Alveolar surface tension and lung surfactant. In: Fishman AP, Macklem PT, Mead J, Geiger SR (eds) Handbook of Physiology. The Respiratory System. Mechanics of Breathing. Section 3, vol. III, pt. 1, chapt. 16. American Physiological Society, Bethesda, pp 247ā€“261

    Google ScholarĀ 

  8. Romero PV, Robatto FM, Simard S, Ludwig MS (1992) Lung tissue behaviour during methacholine challenge in rabbits in vivo. J Appl Physiol 73: 207ā€“212

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Ingenito EP, Davison B, Fredberg JJ (1993) Tissue resistance in the guinea pig at baseline and during methacholine constriction. J Appl Physiol 75: 2541ā€“2548

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Romero PV, Ludwig MS (1991) Maximal methacholin-induced constriction in rabbit lung: interaction between airways and tissues. J Appl Physiol 46: 1251ā€“1262

    Google ScholarĀ 

  11. Bachofen H, Hildebrandt J, Bachofen M (1970) Pressure-volume curves of air-and liquid-filled excised lungs: surface tension in situ. J Appl Physiol 29: 422ā€“431

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Hoppin FG Jr, Stothert JS Jr, Greaves IA, Lai YL, Hildebrand J (1986) Lung recoil: elastic and rheological properties. In: Handbook of Physiology. The Respiratory System. Mechanics of Breathing. Section 3, vol. III, pt. 1, chapt. 13. American Physiological Society, Bethesda 195ā€“215

    Google ScholarĀ 

  13. Bates JHT (1993) Understanding lung tissue mechanics in terms of mathematical models. Monaldi Arch Chest Dis 48: 2 134ā€“139

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Sato J, Davey LK, Shardonowsky F, Bates JHT (1991) Low frequency respiratory system resistance in the normal dog during mechanical ventilation. J Appl Physiol 70: 1536ā€“1543

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Shardonowsky FR, McDonough JM, Grunsten MM (1993) Effects of positive end-expiratory pressure on lung tissue mechanics in rabbits. J Appl Physiol 75: 2506ā€“2513

    Google ScholarĀ 

  16. Stamenovic D, Glass GM, Barnas GM, Fredberg JJ (1990) Viscoplasticity of respiratory tissues. J Appl Physiol 69: 973ā€“988

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Stamenovic D, Lutchen KR, Barnas GM (1993) Alternative model of respiratory tissue viscoplasticity. J Appl Physiol 75: 1062ā€“1069

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Bachofen H, Hildebrandt J (1971) Area analysis of pressure-volume hysteresis in mammalian lungs. J Appl Physiol 30: 493ā€“97

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Lorino AM, Harf A (1993) Techniques for measuring respiratory mechanics: an analytic approach with a viscoelastic model. J Appl Physiol 74: 2373ā€“79

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Nicolai T, Lanteri CJ, Sly P (1993) Inherent coupling of elastic and dissipative behaviour of the lung through a viscoelastic time constant. J Appl Physiol 74: 2358ā€“64

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Hildebrandt J (1969) Comparison of mathematical models for cat lung and viscoelastic balloon derived by Laplace transform methods from pressure-volume data. Bull Math Biophys 31: 651ā€“67

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J Appl Physiol 28: 365ā€“72

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Vetterman J, Warner DO, Brichant JF (1989) Halotane decreases both tissue and airways resistance in excised canine lungs. J Appl Physiol 66: 2689ā€“703

    ArticleĀ  Google ScholarĀ 

  24. Bates JHT, Shardonowsky F, Stewart DE (1989) The low frequency dependence of respiratory system resistance and elastance in normal dogs. Respir Physiol 78: 369ā€“382

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Navajas D, Maksym GN, Bates JHT (1993) Viscoelastic nonlinearity of lung tissue (Abstract) Eur J Respir Dis 6 [Suppl 17]: 405s

    Google ScholarĀ 

  26. Suki B, Bates JHT (1991) A nonlinear viscoelastic model of lung tissue mechanics. J Appl Physiol 71: 826ā€“33

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Suki B (1993) Nonlinear phenomena in respiratory mechanical measurements. J Appl Physiol 74: 2574ā€“84

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1998 Springer-Verlag Italia

About this chapter

Cite this chapter

Romero, P.V., CaƱete, C., Aguilar, J.L., Romero, F.J. (1998). Elasticity, viscosity and plasticity in lung parenchyma. In: Milic-Emili, J. (eds) Applied Physiology in Respiratory Mechanics. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2928-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2928-6_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2930-9

  • Online ISBN: 978-88-470-2928-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics