Skip to main content

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

  • 317 Accesses

Abstract

Mechanical ventilation is a technique which, although frequently life-saving, carries nevertheless the potential risk of severe complications [1]. Of these adverse effects, some are the direct consequence of pulmonary pressure and/or volume changes induced by mechanical insufflation of diseased lungs. Barotrauma is the usual term for such complications and refers to the presence of extra-alveolar air (manifesting as interstitial emphysema, pneumomediastinum or pneumoperitoneum, pneumothorax, etc.). In addition to these “macroscopic” alterations, it has been experimentally demonstrated that lung distension during mechanical ventilation may induce alterations of lung fluid balance, increases in endothelial and epithelial permeability and severe ultrastructural damage. These abnormalities may culminate in the production of a pulmonary permeability-type edema accompanied by diffuse alveolar damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pingleton SK (1988) Complications of acute respiratory failure. Am Rev Respir Dis 137: 1463–1493

    Article  PubMed  CAS  Google Scholar 

  2. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565

    Google Scholar 

  3. Kolobow T, Moretti MP, Fumagalli R, Mascheroni D, Prato P, Chen V, Joris M (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 135: 312–315

    Google Scholar 

  4. Tsuno K, Prato P, Kolobow T (1990) Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appl Physiol 69: 956–961

    PubMed  CAS  Google Scholar 

  5. Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen 1 (1984) Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol 57: 1809 1816

    Google Scholar 

  6. Egan EA, Nelson RM, Olver RE (1976) Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol 260: 409–424

    PubMed  CAS  Google Scholar 

  7. Dreyfussl D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    Google Scholar 

  8. Parker JC, Hernandez LA, Longenecker GL, Peevy K, Johnson W (1990) Lung edema caused by high peak inspiratory pressures in dogs. Role of increased microvascular filtration pressure and permeability. Am Rev Respir Dis 142: 321–328

    Google Scholar 

  9. Carlton D, Cummings JJ, Scheerer RG, Poulain FR, Bland RD (1990) Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 69: 577–583

    PubMed  CAS  Google Scholar 

  10. Dreyfussl D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164

    Google Scholar 

  11. Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66: 2364–2368

    PubMed  CAS  Google Scholar 

  12. Dreyfussl D, Saumon G (1993) Role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203

    Google Scholar 

  13. Bowton DL, Kong D L (1989) High tidal volume ventilation produces increased lung water in oleic acid-injured rabbit lungs. Crit Care Med 17: 908–911

    Article  PubMed  CAS  Google Scholar 

  14. Hernandez LA, Coker PJ, May S, Thompson AL, Parker JC (1990) Mechanical ventilation increases microvascular permeability in oleic-acid injured lungs. J. Appl Physiol 69: 2057–2061

    PubMed  CAS  Google Scholar 

  15. Dreyfussl D, Soler P, Saumon G (1991) High volume ventilation produces more severe damage in previously injured lungs. Am Rev Respir Dis 143 [Suppl.]: A251 (Abstract)

    Article  Google Scholar 

  16. Forrest JB (1972) The effect of hyperventilation on pulmonary surface activity. Brit J Anaesth 44: 313–319

    Article  PubMed  CAS  Google Scholar 

  17. Wyszogrodski I, Kyei Aboagye K, Taeusch HW Jr, Avery ME (1975) Surfactant inactivation by hyperventilation: conservation by end-expiratory pressure. J Appl Physiol 38: 461–466

    PubMed  CAS  Google Scholar 

  18. Permutt S (1979) Mechanical influences on water accumulation in the lungs. In: Fishman AP, Renkin EM (eds) Pulmonary edema. Clinical Physiology Series. American Physiological Society, Bethesda, pp 175–193

    Google Scholar 

  19. West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70: 1731–1742

    PubMed  CAS  Google Scholar 

  20. Dreyfussl D, Soler P, Saumon G (1992) Spontaneous resolution of the pulmonary edema caused by short periods of cyclic overinflation. J Appl Physiol 72: 2081–2089

    Google Scholar 

  21. Maunder RJ, Shuman WP, Mc Hugh JW, Marglin SI, Butler J (1986) Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA 255: 2463–2465

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Italia

About this chapter

Cite this chapter

Dreyfussl, D., Saumon, G. (1998). Volutrauma and barotrauma. In: Milic-Emili, J. (eds) Applied Physiology in Respiratory Mechanics. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2928-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2928-6_12

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2930-9

  • Online ISBN: 978-88-470-2928-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics