Skip to main content

Conclusion: Outlook and Shortcomings

  • Chapter
  • 1009 Accesses

Part of the book series: SIMAI Springer Series ((SEMA SIMAI,volume 2))

Abstract

The so-called method of artificial viscosity has been introduced in the seminal 1950 paper by Richtmyer and Von Neumann [24], where a Lagrangian hyperbolic system of gas dynamics is approximated by finite differences on staggered grids (the specific volume and the velocity aren’t known at the same points). In order to stabilize the Fourier modes of the numerical solution, it appeared necessary to include an artificial dissipative term in the pressure law, negligible in smooth areas and \( \mathcal{O} \)(1) in the vicinity of shocks. On the contrary [11], scientists in the Soviet Union

Many people say I don’t take my sport too seriously, but every day, I get up around noon, and roll down to the beach to see if there is any wind. If it is over 12 meter per second, I might sail for one or two hours and do some loops before I get to the bar and hang out with the guys.

Josh Angulo, wave-riding world champion

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arora M., Roe P.L.: On postshock oscillations due to capturing schemes in unsteady flows. J. Comput. Phys. 130, 25-40 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Azarenok B.N., Ivanenko S.A., Tang T.: Adaptive mesh redistribution method based on Godunov scheme. Comm. Math. Sci. 1, 152-179 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baiti P., Bressan A., Jenssen H.K.: An instability of the Godunov scheme. Comm. Pure Appl. Math. 59, 1604-1638 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bressan A., Jenssen H.K.: On the convergence of Godunov scheme for straight line nonlinear hyperbolic systems. Chinese Annals of Mathematics (CAM) 21, 269-284 (2000)

    Google Scholar 

  5. Bultelle M., Grassin M., Serre D.: Unstable Godunov discrete profiles for steady shock waves. SIAM J. Numer. Anal. 35, 2272-2297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carpenter M.H., Casper J.H.: Accuracy of Shock Capturing in Two Spatial Dimensions. AIAA Journal 37, 1072-1079 (1999)

    Article  Google Scholar 

  7. Delarue F., Lagoutière F.: Probabilistic analysis of the upwind scheme for transport. Arch. Ration. Mech. Anal. 199, 229-268 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Efraimsson G., Kreiss G.: A remark on numerical errors downstream of slightly viscous shocks. SIAM J. Numer. Anal. 36, 853-863 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Elling V.: The Carbuncle Phenomenon is Incurable. Acta Math. Scientia 29B, 1647-1656 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Engquist B., Sjögreen B.: The Convergence Rate of Finite Difference Schemes in the Presence of Shocks. SIAM J. Numer. Anal. 35, 2464-2485 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Godunov S.K.: Reminiscences about difference schemes. J. Comput. Phys., 153, 6-25 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kreiss G.: Convergence to steady-state of solutions of the Euler equations. BIT 28, 144-162 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liseikin V.D.: A Computational Differential Geometry Approach to Grid Generation, 2nd edn. Springer, Berlin Heidelberg (2007)

    MATH  Google Scholar 

  14. Sanders R., Morano E., Druguet M.-C.: Multidimensional Dissipation for Upwind Schemes: Stability and Applications to Gas Dynamics. J. Comput. Phys. 145, 511-537 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shu C.-W.: High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. SIAM Review 51, 82-126 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Siklosi M., Batzorig B., Kreiss G.: An investigation of the internal structure of shock profiles for shock capturing schemes. J. Comput. Appl. Math. 201, 8-29 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Siklosi M., EfraimssonG.: Analysis of first order errors in shock calculations in two spce dimensions. SIAM J. Numer. Anal. 43, 672-685 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Siklosi M., Kreiss G.: Elimination of first order errors in time dependent shock calculations. SIAM J. Numer. Anal. 41, 2131-2148 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tang H., Tang T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487-515 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Taylor T.D., Masson B.S.: Application of the unsteady numerical method of Godunov to computation of supersonic flows past bell shaped bodies. J. Comput. Phys. 5, 443-454 (1970)

    Article  MATH  Google Scholar 

  21. VáchalP., Liska R., Wendroff B., Fully two-dimensional HLLECRiemann Solver. Proceedings of Czech-Japanese Seminar in Applied Mathematics, August 4-7, 2004, pp. 195-206. Czech Technical University in Prague (204)

    Google Scholar 

  22. Van Leer B.: Towards the ultimate conservative difference schemes V.A second order sequel to Godunov’s method. J. Comp. Phys. 32, 101-136 (1979)

    Google Scholar 

  23. Van Leer B.: On the relation between the upwind differencing schemes of Engquist-Osher, Godunov and Roe. SIAM J. Sci. Stat. Comp. 5, 1-20 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Von Neumann J., Richtmyer R.D.: A Method for the Numerical Calculation of Hydrodynamic Shocks. Journal of Applied Physics 21, 232-237 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zaide D.W., Roe P.L.: Flux Functions for Reducing Numerical Shockwave Anomalies. Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, 9-13 July 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Gosse, L. (2013). Conclusion: Outlook and Shortcomings. In: Computing Qualitatively Correct Approximations of Balance Laws. SIMAI Springer Series, vol 2. Springer, Milano. https://doi.org/10.1007/978-88-470-2892-0_16

Download citation

Publish with us

Policies and ethics