Skip to main content

A Dual Interpretation of the Gromov–Thurston Proof of Mostow Rigidity and Volume Rigidity for Representations of Hyperbolic Lattices

  • Chapter
Trends in Harmonic Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 3))

Abstract

We use bounded cohomology to define a notion of volume of an \(\operatorname{SO}(n,1)\)-valued representation of a lattice \(\varGamma<\operatorname{SO}(n,1)\) and, using this tool, we give a complete proof of the volume rigidity theorem of Francaviglia and Klaff (Geom. Dedicata 117, 111–124 (2006)) in this setting. Our approach gives in particular a proof of Thurston’s version of Gromov’s proof of Mostow Rigidity (also in the non-cocompact case), which is dual to the Gromov–Thurston proof using the simplicial volume invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader, U., Furman, A., Sauer, R.: Integrable measure equivalence and rigidity of hyperbolic lattices. http://arxiv.org/abs/1006.5193v1

  2. Besson, G., Courtois, G., Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal. 5, 731–799 (1995). MR 1354289 (96i:58136)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besson, G., Courtois, G., Gallot, S.: Inégalités de Milnor-Wood géométriques. Comment. Math. Helv. 82, 753–803 (2007). MR 2341839 (2009e:53055)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bloch, S.J.: Higher Regulators, Algebraic K-theory, and Zeta Functions of Elliptic Curves. CRM Monograph Series, vol. 11. Am. Math. Soc., Providence (2000). MR 1760901 (2001i:11082)

    Google Scholar 

  5. Brooks, R.: Some remarks on bounded cohomology. In: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, NY, 1978. Ann. of Math. Stud., vol. 97, pp. 53–63. Princeton Univ. Press, Princeton (1981). MR 624804 (83a:57038)

    Google Scholar 

  6. Bucher-Karlsson, M.: The proportionality constant for the simplicial volume of locally symmetric spaces. Colloq. Math. 111, 183–198 (2008). MR 2365796 (2008k:53105)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bucher-Karlsson, M.: The simplicial volume of closed manifolds covered by ℍ2×ℍ2. J. Topol. 1, 584–602 (2008). MR 2417444 (2009i:53025)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bucher, M., Kim, I., Kim, S.: Proportionality principle for the simplicial volume of families of Q-rank 1 locally symmetric spaces. arXiv:1209.4697

  9. Bucher, M., Monod, N.: The norm of the Euler class. Math. Ann. 353, 523–544 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burger, M., Iozzi, A.: Boundary maps in bounded cohomology. Geom. Funct. Anal. 12(2), 281–292 (2002). MR 1911668 (2003d:53065b). Appendix to: Burger, M., Monod, M.: Geom. Funct. Anal. 12, 219–280 (2002). MR 1911660 (2003d:53065a)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burger, M., Iozzi, A.: A useful formula from bounded cohomology. In: Géométries à courbure négative ou nulle, groupes discrets et rigidités. Sémin. Congr., vol. 18, pp. 243–292. Soc. Math. France, Paris (2009). MR 2655315 (2011m:22017)

    Google Scholar 

  12. Burger, M., Iozzi, A., Wienhard, A.: Surface group representations with maximal Toledo invariant. C. R. Math. Acad. Sci. Paris 336(5), 387–390 (2003). MR 1979350 (2004e:53076)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burger, M., Iozzi, A., Wienhard, A.: Surface group representations with maximal Toledo invariant. Ann. Math. (2) 172(1), 517–566 (2010). MR 2680425

    Article  MathSciNet  MATH  Google Scholar 

  14. Calabi, E., Vesentini, E.: Sur les variétés complexes compactes localement symétriques. Bull. Soc. Math. Fr. 87, 311–317 (1959). MR 0111057 (22 #1922a)

    MathSciNet  MATH  Google Scholar 

  15. Calabi, E., Vesentini, E.: On compact, locally symmetric Kähler manifolds. Ann. Math. 71, 472–507 (1960). MR 0111058 (22 #1922b)

    Article  MathSciNet  MATH  Google Scholar 

  16. Douady, A., Earle, C.J.: Conformally natural extension of homeomorphisms of the circle. Acta Math. 157, 23–48 (1986). MR 857678 (87j:30041)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dunfield, N.M.: Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds. Invent. Math. 136, 623–657 (1999). MR 1695208 (2000d:57022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Francaviglia, S.: Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds. Int. Math. Res. Not. 9, 425–459 (2004). MR 2040346 (2004m:57032)

    Article  MathSciNet  Google Scholar 

  19. Francaviglia, S., Klaff, B.: Maximal volume representations are Fuchsian. Geom. Dedic. 117, 111–124 (2006). MR 2231161 (2007d:51019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldman, W.M.: Discontinuous groups and the Euler class. ProQuest LLC, Ann Arbor, MI, 1980. Ph. D. Thesis, University of California, Berkeley. MR 2630832

    Google Scholar 

  21. Gromov, M.: Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math. 56, 5–99 (1982). MR 686042 (84h:53053)

    MathSciNet  MATH  Google Scholar 

  22. Guichardet, A.: Cohomologie des Groupes Topologiques et des Algèbres de Lie. Textes Mathématiques [Mathematical Texts], vol. 2. CEDIC, Paris (1980). MR 644979 (83f:22004)

    MATH  Google Scholar 

  23. Haagerup, U., Munkholm, H.J.: Simplices of maximal volume in hyperbolic n-space. Acta Math. 147, 1–11 (1981). MR 631085 (82j:53116)

    Article  MathSciNet  MATH  Google Scholar 

  24. Iozzi, A.: Bounded cohomology, boundary maps, and rigidity of representations into Homeo+(S 1) and SU(1,n). In: Rigidity in Dynamics and Geometry, Cambridge, 2000, pp. 237–260. Springer, Berlin (2002). MR 1919404 (2003g:22008)

    Google Scholar 

  25. Kneser, H.: Die kleinste Bedeckungszahl innerhalb einer Klasse von Flächenabbildungen. Math. Ann. 103, 347–358 (1930). MR 1512626

    Article  MathSciNet  MATH  Google Scholar 

  26. Mackey, G.W.: Induced representations of locally compact groups. I. Ann. Math. (2) 55, 101–139 (1952). MR 0044536 (13,434a)

    Article  MathSciNet  MATH  Google Scholar 

  27. Monod, N.: Continuous Bounded Cohomology of Locally Compact Groups. Lect. Notes in Mathematics, vol. 1758. Springer, Berlin (2001). MR 1840942 (2002h:46121)

    Book  MATH  Google Scholar 

  28. Mostow, G.D.: Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math. 34, 53–104 (1968). MR 0236383 (38 #4679)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prasad, G.: Strong rigidity of Q-rank 1 lattices. Invent. Math. 21, 255–286 (1973). MR 0385005 (52 #5875)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups, London Mathematical Society Monographs, New Series, vol. 22, 2nd edn. Clarendon, Oxford University Press, New York (2000). MR 1802924 (2002d:43005)

    MATH  Google Scholar 

  31. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987). MR 924157 (88k:00002)

    MATH  Google Scholar 

  32. Selberg, A.: On discontinuous groups in higher-dimensional symmetric spaces. In: Contributions to Function Theory, Internat. Colloq. Function Theory, Bombay, 1960, pp. 147–164. Tata Institute of Fundamental Research, Bombay (1960). MR 0130324 (24 #A188)

    Google Scholar 

  33. Thurston, W.: Geometry and Topology of 3-Manifolds. Notes from Princeton University, Princeton (1978)

    Google Scholar 

  34. Toledo, D.: Representations of surface groups in complex hyperbolic space. J. Differ. Geom. 29, 125–133 (1989). MR 978081 (90a:57016)

    MathSciNet  MATH  Google Scholar 

  35. Weil, A.: On discrete subgroups of Lie groups. Ann. Math. (2) 72, 369–384 (1960). MR 0137792 (25 #1241)

    Article  MathSciNet  Google Scholar 

  36. Weil, A.: On discrete subgroups of Lie groups. II. Ann. Math. (2) 75, 578–602 (1962). MR 0137793 (25 #1242)

    Article  MathSciNet  Google Scholar 

  37. Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Monographs in Mathematics, vol. 81. Birkhäuser, Basel (1984). MR 776417 (86j:22014)

    MATH  Google Scholar 

Download references

Acknowledgements

Michelle Bucher was supported by Swiss National Science Foundation project PP00P2-128309/1, Alessandra Iozzi was partially supported by Swiss National Science Foundation project 2000021-127016/2. The first and third named authors thank the Institute Mittag-Leffler in Djurholm, Sweden, for their warm hospitality during the preparation of this paper. Finally, we thank Beatrice Pozzetti for a thorough reading of the manuscript and numerous insightful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Iozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Bucher, M., Burger, M., Iozzi, A. (2013). A Dual Interpretation of the Gromov–Thurston Proof of Mostow Rigidity and Volume Rigidity for Representations of Hyperbolic Lattices. In: Picardello, M. (eds) Trends in Harmonic Analysis. Springer INdAM Series, vol 3. Springer, Milano. https://doi.org/10.1007/978-88-470-2853-1_4

Download citation

Publish with us

Policies and ethics