Skip to main content

Log-Based Failure Analysis of Complex Systems: Methodology and Relevant Applications

  • Chapter
  • First Online:
Innovative Technologies for Dependable OTS-Based Critical Systems

Abstract

Failure analysis is valuable to dependability engineers because it supports designing effective mitigation means, defining strategies to reduce maintenance costs, and improving system service. Event logs, which contain textual information about regular and anomalous events detected by the system under real workload conditions, represent a key source of data to conduct failure analysis. So far, event logs have been successfully used in a variety of domains. This chapter describes methodology and well-established techniques underlying log-based failure analysis. Description introduces the workflow leading to analysis results starting from the raw data in the log. Moreover, the chapter surveys relevant works in the area with the aim of highlighting main objectives and applications of log-based failure analysis. Discussion reveals benefits and limitations of logs for evaluating complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iyer, R.K., Kalbarczyk, Z., Kalyanakrishnan, M.: Measurement-based analysis of networked system availability. In: Haring, G., et al. (eds.) Performance Evaluation: Origins and Directions. Springer, Berlin (2000)

    Google Scholar 

  2. Oliner, A.J., Stearley, J.: What supercomputers say: a study of five system logs. In: Proceedings of the International Conference on Dependable Systems and Networks, IEEE Computer Society (DSN) (2007)

    Google Scholar 

  3. Murphy, B., Levidow, B.: Windows 2000 dependability. MSR-TR-2000-56 Technical Report, Redmond, WA (2000)

    Google Scholar 

  4. Simache, C., Kaâniche, M.: Availability assessment of sunOS/solaris unix systems based on syslogd and wtmpx log files: a case study. In: Pacific Rim International Symposium on Dependable Computing (PRDC), IEEE Computer Society (2005)

    Google Scholar 

  5. Laplace, J., Brun, M.: Critical software for nuclear reactors: 11 years of field experience analysis. In: Proceedings of the International Symposium on Software Reliability Engineering (ISSRE), IEEE Computer Society (1999)

    Google Scholar 

  6. Cinque, M., Cotroneo, D., Russo, S.: Collecting and analyzing failure data of bluetooth personal area networks. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2006)

    Google Scholar 

  7. Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M., Sahoo, R.K.: BlueGene/L failure analysis and prediction models. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2006)

    Google Scholar 

  8. Pecchia, A., Cotroneo, D., Kalbarczyk, Z., Iyer, R.K.: Improving log-based field failure data analysis of multi-node computing systems. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2011)

    Google Scholar 

  9. Oppenheimer, D.L., Ganapathi, A., Patterson, D.A.: Why do internet services fail, and what can be done about it? In: USENIX Symposium on Internet Technologies and Systems (2003)

    Google Scholar 

  10. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance computing systems. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2006)

    Google Scholar 

  11. Chillarege, R., Biyani, S., Rosenthal, J.: Measurement of failure rate in widely distributed software. In: Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS), IEEE Computer Society (1995)

    Google Scholar 

  12. Kalyanakrishnam, M., Kalbarczyk, Z., Iyer, R.K.: Failure data analysis of a LAN of windows NT based computers. In: Proceedings of the International Symposium on Reliable Distributed Systems (SRDS), IEEE Computer Society (1999)

    Google Scholar 

  13. Lim, C., Singh, N., Yajnik, S.: A log mining approach to failure analysis of enterprise telephony systems. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2008)

    Google Scholar 

  14. Hansen, J.P., Siewiorek, D.P.: Models for time coalescence in event logs. In: Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS), IEEE Computer Society (1992)

    Google Scholar 

  15. Iyer, R.K., Young, L.T., Sridhar, V.: Recognition of error symptoms in large systems. In: Proceedings of 1986 ACM Fall Joint Computer Conference. ACM ’86 (1986)

    Google Scholar 

  16. Buckley, M., Siewiorek, D.: A comparative analysis of event tupling schemes. In: Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS) IEEE Computer Society (1996)

    Google Scholar 

  17. Lonvick, C.: The BSD Syslog Protocol. Request for Comments 3164, The Internet Society, Network Working Group, RFC3164 (2001)

    Google Scholar 

  18. Microsoft: Windows Event Log. http://msdn.microsoft.com/en-us/library/aa385780(v=VS.85).aspx

  19. Apache: Software Foundation, Logging Services. http://logging.apache.org/

  20. Thakur, A., Iyer, R.K.: Analyze-NOW—an environment for collection and analysis of failures in a networked of workstations. IEEE Trans. Reliab.4, 561–570 (1996)

    Google Scholar 

  21. Ascione, P., Cinque, M., Cotroneo, D.: Automated logging of mobile phones failures data. International Symposium on Object-Oriented Real-Time, Distributed Computing (ISORC) (2006)

    Google Scholar 

  22. IBM: Common Event Infrastructure. http://www-01.ibm.com/software/tivoli/features/cei

  23. Vaarandi, R.: SEC—a lightweight event correlation tool. In: Proceedings of 2002 IEEE Workshop on IP Operations and Management (IPOM) (2002)

    Google Scholar 

  24. Vaarandi, R.: A data clustering algorithm for mining patterns from event logs. In: Proceedings of 2003 IEEE Workshop on IP Operations and Management (IPOM) (2003)

    Google Scholar 

  25. Tsao, M.M., Siewiorek, D.P.: Trend analysis on system error files. In: Thirteenth Annual International Symposium on Fault-Tolerant Computing (1983)

    Google Scholar 

  26. Fu, S., Xu, C.: Exploring event correlation for failure prediction in coalitions of clusters. In: Proceedings of the 2007 ACM/IEEE conference on Supercomputing. SC ’07 (2007)

    Google Scholar 

  27. Tang, D., Hecht, M., Miller, M., Handal, J.: MEADEP: A dependability evaluation tool for engineers. IEEE Trans. Relaib. (1998)

    Google Scholar 

  28. Lal, R., Choi, G.: Error and failure analysis of a UNIX server. In: IEEE International Symposium on High-Assurance Systems Engineering (1998)

    Google Scholar 

  29. Simache, C., Kaaniche, M., Saidane, A.: Event log based dependability analysis of windows NT and 2K systems. In: Pacific Rim International Symposium on Dependable Computing (PRDC), IEEE Computer Society(2002)

    Google Scholar 

  30. Ganapathi, A., Patterson, D.A.: Crash data collection: a windows case study. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2005)

    Google Scholar 

  31. Oppenheimer, D., Patterson, D.A.: Studying and using failure data from large-scale internet services. In: Proceedings of the 10th Workshop on ACM SIGOPS European Workshop (2002)

    Google Scholar 

  32. Matz, S., Votta, L., Makawi, M.: Analysis of failure recovery rates in a wireless telecommunication system. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2002)

    Google Scholar 

  33. Mullen, R.: The lognormal distribution of software failure rates: origin and evidence. In: Proceedings of the International Symposium on Software Reliability Engineering (ISSRE), IEEE Computer Society (1998)

    Google Scholar 

  34. Lin, T.T., Siewiorek, D.: Error log analysis: statistical modeling and heuristic trend analysis. IEEE Trans. Reliab.39, 238–249 (1990)

    Google Scholar 

  35. Hsueh, M.C., Iyer, R.K., Trivedi, K.S.: Performance modeling based on real data: a case study. IEEE Trans. Comput.c-37, 478–484 (1988)

    Google Scholar 

  36. Wein, A., Sathaye, A.: Validating complex computer system availability models. IEEE Trans. Reliab.39(4), 468–479 (1990)

    Google Scholar 

  37. Castillo, X., Siewiorek, D.: A performance-reliability model for computing systems. In: Proceeding of the International Symposium on Fault-Tolerant Computing (FTCS), IEEE Computer Society (1980)

    Google Scholar 

  38. Castillo, X., Siewiorek, D.: Workload, performance, and reliability of digital computing systems. In: Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS), IEEE Computer Society (1981)

    Google Scholar 

  39. Iyer, R.K., Rossetti, D.J., Hsueh, M.C.: Measurement and modeling of computer reliability as affected by system activity. ACM Trans. Comput. Syst.4, 187–213 (1986)

    Google Scholar 

  40. Lee, I., Iyer, R., Tang, D.: Error/failure analysis using event logs from fault tolerant systems. In: Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS), IEEE Computer Society (1991)

    Google Scholar 

  41. D., T., Iyer, R.K.: Dependability measurement and modeling of a multicomputer system. IEEE Trans. Comput.42(1), 62–75 (1993)

    Google Scholar 

  42. Iyer, R., Young, L., Iyer, P.: Automatic recognition of intermittent failures: an experimental study of field data. IEEE Trans. Comput.39(4), 525–537 (1990)

    Google Scholar 

  43. Salfner, F., Malek, M.: Using hidden semi-markov models for effective online failure prediction. In: Proceedings of the International Symposium on Reliable Distributed Systems (SRDS), IEEE Computer Society (2007)

    Google Scholar 

  44. Sahoo, R.K., Oliner, A.J., Rish, I., Gupta, M., Moreira, J.E., Ma, S., Vilalta, R., Sivasubramaniam, A.: Critical event prediction for proactive management in large-scale computer clusters. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (2003)

    Google Scholar 

  45. Dacier, M., Pouget, F., Debar, H.: Honeypots: practical means to validate malicious fault assumptions. In: Pacific Rim International Symposium on Dependable Computing (PRDC), IEEE Computer Society (2004)

    Google Scholar 

  46. Cukier, M., Berthier, R., Panjwani, S., Tan, S.: A statistical analysis of attack data to separate attacks. In: Proceedings of International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2006)

    Google Scholar 

  47. Sharma, A., Kalbarczyk, Z., Barlow, J., Iyer, R.: Analysis of security data from a large-scale organization. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2011)

    Google Scholar 

  48. Pecchia, A., Sharma, A., Kalbarczyk, Z., Cotroneo, D., Iyer, R.K.: Identifying compromised users in shared computing infrastructures: a data-driven bayesian network approach. In: Proceedings of International Symposium on Reliable Distributed Systems (SRDS), IEEE Computer Society (2011)

    Google Scholar 

  49. Carlson, J., Murphy, R.: Reliability analysis of mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (2003)

    Google Scholar 

  50. Cotroneo, D., Orlando, S., Russo, S.: Failure classification and analysis of the java virtual machine. In: Proceedings of 26th International Conference on Distributed Computing Systems (ICDCS) (2006)

    Google Scholar 

  51. Carrozza, G., Cinque, M., Cotroneo, D., Russo, S.: Dependability evaluation and modeling of the bluetooth data communication channel. In: Proceedings of the 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP) (2008)

    Google Scholar 

  52. Cinque, M., Cotroneo, D., Natella, R., Pecchia, A.: Assessing and improving the effectiveness of logs for the analysis of software faults. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN), IEEE Computer Society (2010)

    Google Scholar 

  53. Cinque, M., Cotroneo, D., Pecchia, A.: A logging approach for effective dependability evaluation of complex systems. In: Proceedings of the International Conference on Dependability (DEPEND), IEEE Computer Society (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pecchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Pecchia, A., Cinque, M. (2013). Log-Based Failure Analysis of Complex Systems: Methodology and Relevant Applications. In: Cotroneo, D. (eds) Innovative Technologies for Dependable OTS-Based Critical Systems. Springer, Milano. https://doi.org/10.1007/978-88-470-2772-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2772-5_15

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2771-8

  • Online ISBN: 978-88-470-2772-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics