GIS and Geostatistics for Supporting Environmental Analyses in Space-Time

  • Sabrina Maggio
  • Claudia Cappello
  • Daniela Pellegrino
Chapter
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

The environmental risk assessment involves the analysis of complex phenomena. Different kinds of information, such as environmental, socio-economic, political and institutional data, are usually collected. In this chapter, spatio-temporal geostatistical analysis is combined with the use of a Geographic Information System (GIS): the integration between geostatistical tools and GIS enables the identification and the visualization of alternative scenarios regarding a phenomenon under study and supports the environmental risk management.

A case study on environmental data measured at different monitoring stations in the southern part of Apulia Region (South of Italy), called Grande Salento, is discussed. Sample data concerning daily averages of PM10, Wind Speed and Atmospheric Temperature, are used for stochastic prediction, through space–time indicator kriging.

Kriging results are implemented in a GIS and a 3D representation of the spatio-temporal probability maps is proposed.

Keywords

Conditional probability map Geostatistics GIS PM10 pollution Space–time indicator kriging 

Notes

Acknowledgements

The authors would like to thank Prof. D. Posa for his helpful suggestions and Prof. S. De Iaco for supporting the research activities involved in this paper by the Project “5 per mille per la ricerca” entitled “Modelli di Interpolazione Stocastica per il Monitoraggio Ambientale: Sviluppi Teorici e Applicativi”, University of Salento (2011–2012).

References

  1. 1.
    Anselin, L.: Computing environments for spatial data analysis. J. Geogr. Inf. Syst. 2(3), 201–220 (2000)CrossRefGoogle Scholar
  2. 2.
    Biggeri, A., Bellini, P., Terracini, B.: Metanalisi italiana degli studi sugli effetti a breve termine dell’inquinamento atmosferico. Epidemiol. Prev. 25(2), Suppl. 1–72 (2001)Google Scholar
  3. 3.
    Bivand, R.S., Gebhardt, A.: Implementing functions for spatial statistical analysis using the R language. J. Geogr. Syst. 2(3), 307–311 (2000)CrossRefGoogle Scholar
  4. 4.
    Boots, B.: Using GIS to promote spatial analysis. J. Geogr. Syst. 2(1), 17–21 (2000)CrossRefGoogle Scholar
  5. 5.
    Chen, K., Blong, R., Jacobson, C.: Towards an integrated approach to natural hazard risk assessment using GIS: with reference to bushfires. Environ. Manage. 31(4), 546–560 (2003)CrossRefGoogle Scholar
  6. 6.
    Chilés, J., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999)MATHCrossRefGoogle Scholar
  7. 7.
    Cressie, N., Huang, H.: Classes of nonseparable, spatial-temporal stationary covariance functions. J. Am. Stat. Assoc. 94(448), 1330–1340 (1999)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    De Iaco, S.: Space-time correlation analysis: a comparative study, J. Appl. Stat. 37(6), 1027–1041 (2010)Google Scholar
  9. 9.
    De Iaco, S.: A new space-time multivariate approach for environmental data analysis. J. Appl. Stat. 38(11), 2471–2483 (2010)Google Scholar
  10. 10.
    De Iaco, S., Myers, D.E., Posa, D.: Space-time analysis using a general product-sum model. Stat. Probab. Lett. 52(1), 21–28 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    De Iaco, S., Myers, D.E., Posa, D.: Nonseparable space-time covariance models: some parametric families. Math. Geol. 34(1), 23–42 (2002)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    De Iaco, S., Myers, D.E., Posa, D.: On strict positive definiteness of product and product-sum covariance models. J. Stat. Plan. Inf. 141(3), 1132–1140 (2011)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    De Iaco, S., Myers, D.E., Posa, D.: Strict positive definiteness of a product of covariance functions. Commun. Stat. Theory Methods 40(24), 4400–4408 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    De Iaco, S., Posa, D.: Predicting spatio-temporal random fields: some computational aspects. Comput. Geosci. 41, 12–24 (2012)CrossRefGoogle Scholar
  15. 15.
    Dimitrakopoulos, R., Luo, X.: Spatiotemporal modeling: covariance and ordinary kriging systems. In: Dimitrakopoulos, R. (ed.) Geostatistics for the Next Century, pp. 88–93. Kluwer, Dordrecht (1994)CrossRefGoogle Scholar
  16. 16.
    Diodato, N., Ceccarelli, M.: Multivariate indicator kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands. Ecol. Indic. 4(3), 177–187 (2004)CrossRefGoogle Scholar
  17. 17.
    Gneiting, T.: Nonseparable, stationary covariance functions for space-time data. J. Am. Stat. Assoc. 97(458), 590–600 (2002)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Goodchild, M.F., Haining, R., Wise, S.: Integrating GIS and spatial data analysis: problems and possibilities. Int. J. Geogr. Syst. 6(5), 407–423 (1992)CrossRefGoogle Scholar
  19. 19.
    Kolovos, A., Christakos, G., Hristopulos, D.T., Serre, M.L.: Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Adv. Water Resour. 27(8), 815–830 (2004)CrossRefGoogle Scholar
  20. 20.
    Lin, J., Chang, T., Shih, C., Tseng, C.: Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environ. Geol. 42(8), 900–909 (2002)CrossRefGoogle Scholar
  21. 21.
    Ma, C.: Linear combinations for space-time covariance functions and variograms. IEEE Trans. Signal Process. 53(3), 489–501 (2005)Google Scholar
  22. 22.
    Poggio, L., Vrscaj, B., Hepperle, E., Schulin, R., Marsan, F.A.: Introducing a method of human health risk evaluation for planning and soil quality management of heavy metal-polluted soils. An example from Grugliasco (Italy). Landsc. Urban Plan. 88(2–4), 64–72 (2008)CrossRefGoogle Scholar
  23. 23.
    Posa, D.: The indicator formalism in spatial data analysis. J. Appl. Stat. 19(1), 83–101 (1992)CrossRefGoogle Scholar
  24. 24.
    Posa, D., De Iaco, S.: Geostatistica. Teoria e Applicazioni. Giappichelli editore, Torino (2009)Google Scholar
  25. 25.
    Spadavecchia, L., Williams, M.: Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric. For. Meteorol. 149(6–7), 1105–1117 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • Sabrina Maggio
    • 1
  • Claudia Cappello
    • 1
  • Daniela Pellegrino
    • 1
  1. 1.Department of Management and EconomicsUniversity of SalentoLecceItaly

Personalised recommendations