Skip to main content

Coronary Pathophysiology

  • Chapter
  • 2429 Accesses

Abstract

The heart pumps approximately 5 L of blood per minute at rest and up to 24 L per min during vigorous exercise. Accordingly, it consumes more energy than any other organ, cycling about 6 kg of ATP, which is 20–30 times its own weight, every day. To acquire this enormous amount of energy, the heart converts chemical energy stored in fatty acids and glucose into mechanical energy, in the form of actinomyosin myofibrillar interactions. Fatty acids, through β-oxidation, account for about 70% of ATP synthesis, and glucose, through aerobic glycolysis, for the remaining 30%. Due to this dependence on oxidative energy production, increases in cardiac activity require instantaneous parallel increases in oxygen availability [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Westerhof N, Boer C, Lamberts RR, Sipkema P (2006) Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 86:1263–1308

    Article  PubMed  CAS  Google Scholar 

  2. Fragasso G, De Cobelli F, Spodalore R (2011) Resting cardiac energy metabolism is inversely associated with heart rate in healthy young adult men. Am Heart J 162(1):136–141

    Article  PubMed  Google Scholar 

  3. Kaneko N, Matsuda R, Toda M, Shimamoto K (2011) Three-dimensional reconstruction of the human capillary network and the intramyocardial necrosis. Am J Physiol Heart Circ Physiol 300:H754–H761

    Article  PubMed  CAS  Google Scholar 

  4. Deussen A, Ohanyan V, Jannasch A et al (2011) Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol 52:794–801

    Article  PubMed  Google Scholar 

  5. Duncker DJ, Bache RJ, Merkus D (2011) Regulation of coronary resistance vessel tone in response to exercise. J Mol Cell Cardiol 52:802–813

    Article  PubMed  Google Scholar 

  6. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  PubMed  CAS  Google Scholar 

  7. Knaapen P, Camici PG, Marques KM et al (2009) Coronary microvascular resistance: methods for its quantification in humans. Basic Res Cardiol 104:485–498

    Article  PubMed  Google Scholar 

  8. Uren NG, Melin JA, de Bruyne B et al (1994) Relation between myocardial blood flow and the severity of coronary artery stenosis. NEJM 330:1782–1788

    Article  PubMed  CAS  Google Scholar 

  9. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as a measure of coronary flow reserve. Am J Cardiol 33:87–94

    Article  PubMed  CAS  Google Scholar 

  10. Pijls NHJ, de Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary artery stenosis. NEJM 334:1703–1708

    Article  PubMed  CAS  Google Scholar 

  11. Hau WK (2004) Fractional flow reserve and complex coronary pathologic conditions. Eur Heart J 25:723–727

    Article  PubMed  Google Scholar 

  12. Tonino PA, Fearon WF, de Bruyne B et al (2010) Angiographic versus functional severity of coronary stenosis in the FAME study: Fractional flow reserve versus angiography in multivessel evaluation. JACC 55:2816–2821

    Article  PubMed  Google Scholar 

  13. White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary arteriogram predict the physiological importance of coronary stenosis? NEJM 310:819–824

    Article  PubMed  CAS  Google Scholar 

  14. Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92; 2333–2342

    Article  PubMed  CAS  Google Scholar 

  15. Gould KL (2009) Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging 2(8):1009–1023

    Article  PubMed  Google Scholar 

  16. Rickenbacher PR, Pinto FJ, Chenzbraun A et al (1995) Incidence and severity of transplant coronary artery disease early and up to 15 years after transplantation as detected by intravascular ultrasound. J Am Coll Cardiol. 25:171–177

    Article  PubMed  CAS  Google Scholar 

  17. Kolodgie FD, Virmani R, Burke AP et al (2004) Pathologic assessment of the vulnerable human coronary plaque. Heart 90:1385–1391

    Article  PubMed  CAS  Google Scholar 

  18. Falk E (1999) Stable versus unstable atherosclerosis: clinical aspects. Am Heart J 138:S421–S425

    Article  PubMed  CAS  Google Scholar 

  19. Virmani R, Burke AP, Farb A, Kolodgie FD (2002) Pathology of the unstable plaque. Prog Cardiovasc Dis 44:349–356

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Piccoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Piccoli, M., Orazi, S., Giubilato, G., Fioranelli, M. (2013). Coronary Pathophysiology. In: Dowe, D.A., Fioranelli, M., Pavone, P. (eds) Imaging Coronary Arteries. Springer, Milano. https://doi.org/10.1007/978-88-470-2682-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2682-7_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2681-0

  • Online ISBN: 978-88-470-2682-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics