Advertisement

Effetti delle radiazioni alle basse dosi

  • M. G. Andreassi
Part of the Imaging & Formazione book series (IMAG)

Riassunto

Le procedure mediche che impiegano radiazioni ionizzanti rappresentano uno strumento fondamentale in medicina per le prestazioni diagnostiche e terapeutiche.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. 1.
    Amis ES, Butler PF, Applegate KE et al (2007) American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol 4:272–284PubMedCrossRefGoogle Scholar
  2. 2.
    Hall EJ, Brenner DJ (2008) Cancer risks from diagnostic radiology. Br J Radiol 81:362–378PubMedCrossRefGoogle Scholar
  3. 3.
    Mettler FA, Thomadsen BR, Bhargavan M et al (2008) Medical radiation exposure in the US in 2006: preliminary results. Health Phys 95:502–507PubMedCrossRefGoogle Scholar
  4. 4.
    Food and Drug Administration (2010) White paper: Initiative to reduce unnecessary radiation exposure. http://www.fda.gov/downloads/RadiationEmittingProducts/RadiationSafety/Radiation-DoseReduction/UCM200087.pdf. Ultimo accesso 7 aprile 2012
  5. 5.
    President’s Cancer Panel (2010) Environmentally caused cancers are “grossly underestimated” and “needlessly devastate American lives”; http://www.environmentalhealthnews.org/ehs/news/presidents-cancer-panel. Ultimo accesso 7 aprile 2012
  6. 6.
    Picano E (2004) Sustainability of medical imaging. Education and debate. BMJ 328:578–580PubMedCrossRefGoogle Scholar
  7. 7.
    Brenner DJ, Hall EJ (2007) Computed tomography. An increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRefGoogle Scholar
  8. 8.
    International Agency for Research on Cancer: Working Group on the Evaluation of Carcinogenic Risks to Humans (2000) Part 1: X and gamma-radiation and neutrons: Views and expert opinions. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 75Google Scholar
  9. 9.
    United Nations. Sources and effects of ionising radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (1996). Report to the General Assembly with Scientific annexes. United Nations sales publication E.96.IX.3. New York, United NationsGoogle Scholar
  10. 10.
    European Commission. Radiation protection 118: referral guidelines for imaging. http://ec.europa.eu/energy/nuclear/radioprotection/publication/doc/118_en.pdf. Ultimo accesso 7 aprile 2012
  11. 11.
    US Department of Health and Human Services. 11th Report on Carcinogens (RoC); http://ntp.niehs.nih.gov/ntp/roc/toc11.htm. Ultimo accesso 7 aprile 2012
  12. 12.
    Hall EJ (2000) Radiobiology for the radiologist. 5 edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  13. 13.
    Kiefer J (1990) Biological radiation effects. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  14. 14.
    Smith LE, Nagar S, Kim GJ, Morgan WF (2003) Radiation-induced genomic instability: radiation quality and dose response. Health Physics 85:23–29PubMedCrossRefGoogle Scholar
  15. 15.
    Frankenberg-Schwager M, Gebauer A, Koppe C et al (2009) Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation. Radiat Res 171:265–273PubMedCrossRefGoogle Scholar
  16. 16.
    Vogelstein B, Kinzler KW (1998) The genetic basis of human cancer. McGraw-Hill, New YorkGoogle Scholar
  17. 17.
    Stopera SA, Ray M, Riordan D et al (1990) Variant Philadelphia translocations in chronic myeloid leukemia: correlation with cancer breakpoints, fragile sites and oncogenes. Cancer Lett 55:249–253PubMedCrossRefGoogle Scholar
  18. 18.
    Savage JR (1998) A brief survey of aberration origin theories. Mutat Res 404:139–147PubMedCrossRefGoogle Scholar
  19. 19.
    Simpson PJ, Savage JR (1996) Dose-response curves for simple and complex chromosome aberrations induced by Xrays and detected using fluorescence in situ hybridization. Int J Radiat Biol 69:429–436PubMedCrossRefGoogle Scholar
  20. 20.
    Cornforth MN (2006) Perspectives on the formation of radiation-induced exchange aberrations. DNA Repair 5:1182–1191PubMedCrossRefGoogle Scholar
  21. 21.
    International Atomic Energy Agency (2001) Cytogenetic analysis for radiation dose assessment. Technical Report No. 405Google Scholar
  22. 22.
    Hayata I (1996) Advanced cytogenetical techniques necessary for the study of low dose exposures. In: Wei L, Sugahara T, Tao Z (eds) High levels of natural radiation, radiation dose and health effects. Elsevier, AmsterdamGoogle Scholar
  23. 23.
    Hoffmann W, Schmitz-Feuerhake I (1999) How radiation-specific is the dicentric assay? J Expo Anal Env Epid 9:113–133CrossRefGoogle Scholar
  24. 24.
    Fenech M (1981) Optimisation of micronucleus assays for biological dosimetry. In: Gledhill BL, Mauro F (eds) New horizons in biological dosimetry. Wiley, New YorkGoogle Scholar
  25. 25.
    Hagmar L, Bonassi S, Stromberg U et al (1998) Chromosomal aberrations in lymphocytes predict human cancer: a report from the European Study Group on Cytogenetic Biomarkers and Health (ESCH). Cancer Res 58:4117–4121PubMedGoogle Scholar
  26. 26.
    Bonassi S, Znaor A, Ceppi M et al (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28:625–631PubMedCrossRefGoogle Scholar
  27. 27.
    ICRP Publication 85 (2000) Avoidance of radiation injuries from medical interventional procedures extracted from International Commission on Radiation Protection. Ann ICRP 30:1–67Google Scholar
  28. 28.
    Vlietstra RE, Wagner LK, Koenig T, Mettler F (2004) Radiation burns as a severe complication of fluoroscopically guided cardiological interventions. J Interv Cardiol 17:131–142PubMedCrossRefGoogle Scholar
  29. 29.
    Sidhu M, Coley BD, Goske MJ et al (2009) Image gently, step lightly: increasing radiation dose awareness in pediatric interventional radiology. Pediatr Radiol 39:1135–1138PubMedCrossRefGoogle Scholar
  30. 30.
    National Research Council, Committee to Assess Health Risks from Exposure to Lo w Levels of Ionizing Radiation. (2006) BEIR Phase 2. National Academies Press, Washington, DCGoogle Scholar
  31. 31.
    Berrington de González AB, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 22:2071–2077CrossRefGoogle Scholar
  32. 32.
    Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169:2078–2086PubMedCrossRefGoogle Scholar
  33. 33.
    Eisenberg MJ, Afilalo J, Lawler P et al (2011) Cancer risk related to low-dose ionizing radiation from cardiac imaging in patients after acute myocardial infarction. CMAJ 183:430–436PubMedGoogle Scholar
  34. 34.
    Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374PubMedCrossRefGoogle Scholar
  35. 35.
    Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–915PubMedCrossRefGoogle Scholar
  36. 36.
    Stiff T, O’Driscoll M, Rief N et al (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Canc Res 64:2390–2396CrossRefGoogle Scholar
  37. 37.
    Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-rays doses. P Nat Acad Sci 100:5057–5062CrossRefGoogle Scholar
  38. 38.
    Rothkamm K, Balroop S, Shekhdar J et al (2007) Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 242:244–251PubMedCrossRefGoogle Scholar
  39. 39.
    Beels L, Bacher K, De Wolf D et al (2009) γ-H2AX foci as biomarker for patient x-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks? Circulation 120:1903–1909PubMedCrossRefGoogle Scholar
  40. 40.
    Andreassi MG, Cioppa A, Manfredi S et al (2007) Acute chromosomal DN A damage in human lymphocytes after radiation exposure in invasive cardiovascular procedures. Eur Heart J 28:2195–2199PubMedCrossRefGoogle Scholar
  41. 41.
    Andreassi MG, Ait-Ali L, Botto N et al (2006). Cardiac catheterization and long-term chromosomal damage in children with congenital heart disease. Eur Heart J 27:2703–2708PubMedCrossRefGoogle Scholar
  42. 42.
    Ait-Ali L, Andreassi MG, Foffa I et al (2010) Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart 96:269–274PubMedCrossRefGoogle Scholar
  43. 43.
    Andreassi MG, Cioppa A, Botto N et al (2005) Somatic DNA damage in interventional cardiologists: a case-control study. FASEB J 19:998–999PubMedGoogle Scholar
  44. 44.
    Andreassi MG, Foffa I, Manfredi S et al (2009) Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutat Res 666:57–63PubMedCrossRefGoogle Scholar
  45. 45.
    Bentzen SM (2008) From cellular to high-throughput predictive assays in radiation oncology: challenges and opportunities. Semin Radiat Oncol 18:75–88PubMedCrossRefGoogle Scholar
  46. 46.
    Das AK, Bell MH, Nirodi CS et al (2010) Radiogenomics predicting tumor responses to radiotherapy in lung cancer. Semin Radiat Oncol 20:149–155PubMedCrossRefGoogle Scholar
  47. 47.
    Broeks A, Braaf LM, Huseinovic A et al (2007) Identification of women with an increased risk of developing radiation-induced breast cancer: a case only study. Breast Cancer Res 9:R26PubMedCrossRefGoogle Scholar
  48. 48.
    Rajaraman P, Bhatti P, Doody MM et al (2008) Nucleotide excision repair polymorphisms may modify ionizing radiation-related breast cancer risk in US radiologic technologists. Int J Cancer 123:2713–2716PubMedCrossRefGoogle Scholar
  49. 49.
    Cardis E, Hall J, Tavtigian SV (2007) Identification of women with an increased risk of developing radiation-induced breast cancer. Breast Cancer Res 9:106PubMedCrossRefGoogle Scholar
  50. 50.
    Broeks A, Braaf LM, Huseinovic A et al (2007) Identification of women with an increased risk of developing radiation-induced breast cancer: a case only study. Breast Cancer Res 9:R26PubMedCrossRefGoogle Scholar
  51. 51.
    Andrieu N, Easton DF, Chang-Claude J et al (2006) Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the international BRCA1/2 carrier cohort study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators’ Group. J Clin Oncol 24:3361–3366PubMedCrossRefGoogle Scholar
  52. 52.
    Picano E (2004) Informed consent and communication of risk from radiological and nuclear medicine examinations: how to escape from a communication inferno. BMJ 29:849–851CrossRefGoogle Scholar
  53. 53.
    Malone J, Craven C, Guliera R et al (2011). Justification of diagnostic medical exposures, some practical issues. Report of an International Atomic Energy Agency (IAEA) Consultation. Br J Radiol; doi 10.1259/bjr/42893576Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • M. G. Andreassi

There are no affiliations available

Personalised recommendations