Skip to main content

Abstract

The distribution of mitral stenosis (MS) in the general population is closely associated with rheumatic fever, since it is its main cause. Recent data of the World Health Organisation (WHO) suggest that acute rheumatic fever and, as a consequence, rheumatic disease, affect about 15.6 million people throughout the world. Females are affected more frequently than males with a ratio ranging between 2:1 and 3:1 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carapetis JR, Steer AC, Mulholland EK et al (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5:685–694

    PubMed  Google Scholar 

  2. Iung B, Baron G, Butchart EG, et al (2003) A prospective survey of patients with valvular heart disease in Europe: the Euro heart survey on valvular heart disease. Eur Heart J 24:1231–1243

    PubMed  Google Scholar 

  3. Messika-Zeitoun D, Iung B, Brochet E, et al (2008) Evaluation of mitral stenosis in 2008. Arch Cardiovasc Dis 101:653–663

    PubMed  Google Scholar 

  4. Sliwa K, Carrington M, Mayosi BM, et al (2010) Incidence and characteristics of newly diagnosed rheumatic heart disease in urban African adults: insights from the heart of So weto study. Eur Heart J 31:719–727

    PubMed  Google Scholar 

  5. Wood P (1954) An appreciation of mitral stenosis. Clinical features. Br Med J 4870:1051–1063

    Google Scholar 

  6. Essop MR, Nkomo VT (2005) Rheumatic and nonrheumatic valvular heart disease: Epidemiology, management, and prevention in Africa. Circulation 112:3584–3591

    PubMed  Google Scholar 

  7. Burge DJ, DeHoratious RJ (1993) Acute rheumatic fever. Cardiovasc Clin 23:3–23

    CAS  PubMed  Google Scholar 

  8. Guilherme L, Cury P, Demarchi LM, et al (2004) Rheumatic heart disease: Proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol 165:1583–1581

    CAS  PubMed  Google Scholar 

  9. Davutoglu V, Celik A, Aksoy M (2005) Contribution of selected serum inflammatory mediators to the progression of chronic rheumatic valve disease, subsequent valve calcification and NYHA functional class. J Heart Valve Dis 14:251–256

    PubMed  Google Scholar 

  10. Roberts WC (1992) Morphologic aspects of cardiac valve dysfunction. Am Heart J 123:1610–1632

    CAS  PubMed  Google Scholar 

  11. Spencer FC (1978) A plea for early, open mitral commissurotomy. Am Heart J 95:668–670

    CAS  PubMed  Google Scholar 

  12. Carabello BA (1991) Timing of surgery in mitral and aortic stenosis. Cardiol Clin 9:229–238

    CAS  PubMed  Google Scholar 

  13. Hygenholtz PG, Ryan TJ, Stein SW, et al (1962) The spectrum of pure mitral stenosis. Hemodynamic studies in relation to clinical disability. Am J Cardiol 10:773–784

    Google Scholar 

  14. Arani DT, Carleton RA (1967) The deleterious role of tachycardia in mitral stenosis. Circulation 36:511–516

    CAS  PubMed  Google Scholar 

  15. Schofield PM. Invasive investigation of the mitral valve (1996) In: Wells FC, Shapiro LM (eds) Mitral valve disease. Butterworth-Heineman, Oxford, p.84

    Google Scholar 

  16. Kennedy JW, Yarnall SR, Murray JA, et al (1970) Quantitative angiocardiography. IV. Relationships of left atrial and ventricular pressure and volume in mitral valve disease. Circulation 41:817–824

    CAS  PubMed  Google Scholar 

  17. Choi BW, Bacharach SL, Barcour DJ, et al (1995) Left ventricular systolic dysfunction: Diastolic filling characteristics and exercise cardiac reserve in mitral stenosis. Am J Cardiol 75:526–529

    CAS  PubMed  Google Scholar 

  18. Braunwald E, Turi ZG (1996) Pathophysiology of mitral valve disease. In: Wells FC, Shapiro LM (eds) Mitral valve disease. Butterworth-Heineman, Oxford, p.16

    Google Scholar 

  19. Thompson ME, Shaver JA, Leon DF (1977) Effect of tachycardia on atrial transport in mitral stenosis. Am Heart J 94:297–306

    CAS  PubMed  Google Scholar 

  20. Stott DK, Marpole DGF, Bristow JD, et al (1970) The role of left atrial transport in aortic and mitral stenosis. Circulation 41:1031–1041

    CAS  PubMed  Google Scholar 

  21. Diker E, Aydogdu S, Ozdemir M, et al (1996) Prevalence and predictors of atrial fibrillation in rheumatic valvular heart disease. Am J Cardiol 77:96–98

    CAS  PubMed  Google Scholar 

  22. American College of Cardiology American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease) Society of Cardiovascular Anesthesiologists, Bonow RO, Carabello BA, Chatterjee K, et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Re vise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol 48:1–148

    Google Scholar 

  23. Vahanian A, Baumgartner H, Bax J, et al (2007) Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology ESC Committee for Practice Guidelines. Guidelines on the management of valvular heart disease: The Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur Heart J 28:230–268

    PubMed  Google Scholar 

  24. Braundwald E. Valvular heart disease (1984) In: Braundwald E (ed) Heart Disease. W.B. Saunders, Philadelphia pp.1063–1135

    Google Scholar 

  25. Nichol PM, Gilbert BW, Kisslo JA (1977) Two-dimensional echocardiographic assessment of mitral stenosis. Circulation 55:120–128

    CAS  PubMed  Google Scholar 

  26. Baumgartner H, Hung J, Bermejo J, et al (2009) Echocardiographic Assessment of Valve Stenosis: EAE/ASE Recommendations for Clinical Practice. J Am Soc Echocardiogr 22:1–23

    PubMed  Google Scholar 

  27. Messika-Zeitoun D, Brochet E, Holmin C, et al (2007) Three-dimensional evaluation of the mitral valve area and commissural opening before and after percutaneous mitral commissurotomy in patients with mitral stenosis. Eur Heart J 28:72–79

    PubMed  Google Scholar 

  28. Wilkins GT, Weyman AE, Abascal VM, et al (1988) Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J 60:299–308

    CAS  PubMed  Google Scholar 

  29. Iung B, Cormier B, Ducimetiere P, et al (1996) Functional results 5 years after successful percutaneous mitral commissurotomy in a series of 528 patients and analysis of predictive factors. J Am Coll Cardiol 27:407–414

    CAS  PubMed  Google Scholar 

  30. Rahimtoola SH, Durairaj A, Mehra A, et al (2002) Current evaluation and management of patients with mitral stenosis. Circulation 106 1183–1188

    PubMed  Google Scholar 

  31. Iung B, Cormier B, Ducimetiere P, et al (1996) Immediate results of percutaneous mitral commissurotomy. Circulation 94:2124–2130

    CAS  PubMed  Google Scholar 

  32. Reid CL, McKay CR, Chandraratna PA, et al (1987) Mechanisms of increase in mitral valve area and influence of anatomic features in double-balloon, catheter balloon valvuloplasty in adults with rheumatic mitral stenosis: a Doppler and two-dimensional echocardiographic study. Circulation 76:628–636

    CAS  PubMed  Google Scholar 

  33. Nishimura RA, Rihal CS, Tajik AJ, et al (1994) Accurate measurement of the transmitral gradient in patients with mitral stenosis: a simultaneous catheterization and Doppler echocardiographic study. J Am Coll Cardiol l24:152–158

    Google Scholar 

  34. Thomas JD, Newell JB, Choong CY, et al (1991) Physical and physiological determinants of transmitral velocity: numerical analysis. Am J Physiol 260:1718–1731

    Google Scholar 

  35. Faletra F, Pezzano A Jr, Fusco R, et al (1996) Measurement of mitral valve area in mitral stenosis: four echocardiographic methods compared with direct measurement of anatomic orifices. J Am Coll Cardiol 28:1190–1197

    CAS  PubMed  Google Scholar 

  36. Thomas JD, Weyman AE (1987) Doppler mitral pressure half-time: a clinical tool in search of theoretical justification. J Am Coll Cardiol 10:923–929

    CAS  PubMed  Google Scholar 

  37. Schwammenthal E, Vered Z, Agranat O, et al (2000) Impact of atrio ventricular compliance on pulmonary artery pressure in mitral stenosis: an exercise echocardiographic study. Circulation 102:2378–2384

    CAS  PubMed  Google Scholar 

  38. Thomas JD, Wilkins GT, Choong CY, et al (1988) Inaccuracy of mitral pressure half-time immediately after percutaneous mitral valvotomy. Dependence on transmitral gradient and left atrial and ventricular compliance. Circulation 78:980–993

    CAS  PubMed  Google Scholar 

  39. Nakatani S, Masuyama T, Kodama K, et al (1988) Value and limitations of Doppler echocardiography in the quantification of stenotic mitral valve area: comparison of the pressure half-time and the continuity equation methods. Circulation 77:78–85

    CAS  PubMed  Google Scholar 

  40. Messika-Zeitoun D, Fung Yiu S, Cormier B, et al (2003) Sequential assessment of mitral valve area during diastole using colour M-mode flow convergence analysis: new insights into mitral stenosis physiology. Eur Heart J 24:1244–1253

    PubMed  Google Scholar 

  41. Currie PJ, Seward JB, Chan KL, et al (1985) Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler catheterization study in 127 patients. J Am Coll Cardiol 6:750–756

    CAS  PubMed  Google Scholar 

  42. de Agustin JA, Nanda NC, Gill EA, et al (2007) The use of three-dimensional echocardiography for the evaluation of and treatment of mitral stenosis. Cardiol Clin 25:311–318

    PubMed  Google Scholar 

  43. Pérez de Isla L, Casanova C, Almerìa C, et al (2007) Which method should be the reference method to evaluate the severity of rheumatic mitral stenosis? Gorlin’s method versus 3D-echo. Eur J Echocardiogr 8:470–473

    PubMed  Google Scholar 

  44. Applebaum RM, Kasliwal RR, Kanojia A, et al (1998) Utility of three-dimensional echocardiography during balloon mitral valvuloplasty. J Am Coll Cardiol 32:1405–1409

    CAS  PubMed  Google Scholar 

  45. Anwar AM, Attia WM, Nosir YF, et al (2010) Validation of a new score for the assessment of mitral stenosis using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 23:13–22

    PubMed  Google Scholar 

  46. Soliman OI, Anwar AM, Metawei AK et al (2011) New scores for the assessment of mitral stenosis using real-time three-dimensional echocardiography. Curr Cardiovasc Imaging Rep 4:370–377

    PubMed  Google Scholar 

  47. Braunwald E, Moscovitz HL, Mram SS, et al (1955) The hemodynamics of the left side of the heart as studied by simultaneous left atrial, left ventricular and aortic pressures; particular reference to mitral stenosis. Circulation 12:69–81

    CAS  PubMed  Google Scholar 

  48. Gorlin R, Gorlin SG (1951) Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am Heart J 41:1–29

    CAS  PubMed  Google Scholar 

  49. Hugenholtz PG, Ryan TJ, Stein SW, et al (1962) The spectrum of pure mitral stenosis: hemodynamic studies in relation to clinical disability. Am J Cardiol 10:773–784

    CAS  PubMed  Google Scholar 

  50. Rowe JC, Bland EF, Sprague HB, et al (1960) The course of mitral stenosis without surgery: ten and twenty-year perspectives. Ann Intern Med 52:741–749

    CAS  PubMed  Google Scholar 

  51. Olesen KH (1962) The natural history of 271 patients with mitral stenosis under medical treatment. Br Heart J 24:349–357

    CAS  PubMed  Google Scholar 

  52. Selzer A, Cohn KE (1972) Natural history of mitral stenosis: a review. Circulation 45:878–890

    CAS  PubMed  Google Scholar 

  53. Munoz S, Gallardo J, Diaz-Gorrin JR, et al (1975) Influence of surgery on the natural history of rheumatic mitral and aortic valve disease. Am J Cardiol 35:234–242

    CAS  PubMed  Google Scholar 

  54. Ward C, Hancock BW (1975) Extreme pulmonary hypertension caused by mitral valve disease: natural history and results of surgery. Br Heart J 37:74–78

    CAS  PubMed  Google Scholar 

  55. Bonow RO, Carabello BA, Chatterjee K, et al (2008) American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 118:523–661

    Google Scholar 

  56. Himelman RB, Stulbarg M, Kircher B, et al (1989) Noninvasive evaluation of pulmonary artery pressure during exercise by saline-enhanced Doppler echocardiography in chronic pulmonary disease. Circulation 79:863–871

    CAS  PubMed  Google Scholar 

  57. Tamai J, Nagata S, Akaike M, et al (1990) Improvement in mitral flow dynamics during exercise after percutaneous transvenous mitral commissurotomy: noninvasive evaluation using continuous wave Doppler technique. Circulation 81:46–51

    CAS  PubMed  Google Scholar 

  58. Leavitt JI, Coats MH, Falk RH (1991) Effects of exercise on transmitral gradient and pulmonary artery pressure in patients with mitral stenosis or a prosthetic mitral valve: a Doppler echocar-diographic study. J Am Coll Cardiol 17:1520–1526

    CAS  PubMed  Google Scholar 

  59. Cheriex EC, Pieters FA, Janssen JH, et al (1994) Value of exercise Doppler-echocardiography in patients with mitral stenosis. Int J Cardiol 45:219–226

    CAS  PubMed  Google Scholar 

  60. Tamburino C, Russo G, Di Paola G, et al (1993) La valvuloplastica percutanea nella stenosi mitralica. Cardiologia 38:7–17

    CAS  PubMed  Google Scholar 

  61. Palacios IF (1998) Farewell to surgical mitral commissurotomy for many patients. Circulation 97:223–226

    CAS  PubMed  Google Scholar 

  62. Davidson MJ, Baim DS (2008) Percutaneous catheter-based mitral valve repair. In: Cohn LH (ed) Cardiac surgery in the adult. McGraw-Hill, New York, pp 1101–1108

    Google Scholar 

  63. Marsocci G, Neri M, Natale N (2004) Cardiopatie valvolari. Il Pensiero Scientifico Editore, pp.73–103

    Google Scholar 

  64. Fatkin D, Roy P, Morgan JJ, et al (1993) Percutaneous balloon mitral valvotomy with the Inoue single-balloon catheter: commissural morphology as a determinant of outcome. J Am Coll Cardiol 21:390–397

    CAS  PubMed  Google Scholar 

  65. Inoue K (1991) Percutaneous transvenous mitral commissurotomy using the Inoue balloon. Eur Heart J 12:99–108

    PubMed  Google Scholar 

  66. Vahanian A, Acar J (1994) Mitral valvuloplasty: the French experience. In: Topol EJ (ed) Textbook of interventional cardiology. WB Saunders, Philadelphia, pp.1206–1225

    Google Scholar 

  67. Block PC, Palacios IF (1994) Aortic and mitral balloon valvuloplasty: the United States experience. In: Topol EJ (ed) Textbook of interventional cardiology. WB Saunders, Philadelphia, pp.1189–1205

    Google Scholar 

  68. Inoue K, Hungs JS (1994) Percutaneous transv enous mitral commissurotomy (PTMC): the Far East experience. In: Topol EJ (ed) Textbook of interventional cardiology. WB Saunders, Philadelphia, pp.1226–1242

    Google Scholar 

  69. Tamburino C, Russo G, Calvi V, et al (1993) La valvuloplastica mitralica: risultati immediati e followup a 2 anni. Cardiologia 38:367–375

    CAS  PubMed  Google Scholar 

  70. Ross J JR (1959) Catheterization of the left heart through the interatrial septum: a new technique and its experimental evaluation. Surg Forun 9:297–301

    Google Scholar 

  71. Inoue K, Owaki T, Nakamura T, et al (1984) Clinical application of transvenous mitral commissurotomy by a new balloon catheter. J Thorac Cardiovasc Surg 87:394–402

    CAS  PubMed  Google Scholar 

  72. Iung B, Garbarz E, Michaud P, et al (2000) Percutaneous mitral commissurotomy for restenosis after surgical commissurotomy: late efficacy and implications for patient selection. J Am Coll Cardiol 35:1295–1302

    CAS  PubMed  Google Scholar 

  73. Lip G, Wasfi M, Hamil M, et al (1997) Percutaneous balloon v alvuloplasty of stenosed mitral bioprosthesis. Int J Cardiol 59:97–100

    CAS  PubMed  Google Scholar 

  74. Lin PJ, Chang JP, Chang CH (1994) Balloon valvuloplasty is controindicated in stenotic mitral bioprosthesis. Am Heart J 127:724–726

    CAS  PubMed  Google Scholar 

  75. Gupta A, Lokhandwala YY, Satoskar PR, et al (1998) Balloon mitral valvotomy in pregnancy: maternal and fetal outcomes. J Am Coll Surg 187:409–415

    CAS  PubMed  Google Scholar 

  76. Fawzy ME, Kinsara AJ, Stefadouros M, et al (2001) Long-term outcome of mitral balloon valvotomy in pregnant women. J Heart Valve Dis 10:153–157

    CAS  PubMed  Google Scholar 

  77. Hameed A, Karaalp IS, Tummala PP, et al (2001) The effect of valvular heart disease on maternal and fetal outcome of pregnancy. J Am Coll Cardiol 37:893–899

    CAS  PubMed  Google Scholar 

  78. de Souza JA, Martinez EE Jr, Ambrose JA, et al (2001) Percutaneous balloon mitral valvuloplasty in comparison with open mitral valve commissurotomy for mitral stenosis during pregnancy. J Am Coll Cardiol 37:900–903

    PubMed  Google Scholar 

  79. Cohen DJ, Kuntz RE, Gordon SP, et al (1992) Predictors of long-term outcome after percutaneous balloon mitral valvuloplasty. N Engl J Med 327:1329–1335

    CAS  PubMed  Google Scholar 

  80. Kamalesh M, Burger AJ, Shubrooks SJ (1993) The use of transesophageal echocardiography to avoid left atrial thrombus during percutaneous mitral valvuloplasty. Cath Cardiovasc Diagn 28:320–322

    CAS  Google Scholar 

  81. Tsai LM, Hung JS, Chen JH et al (1991) Resolution of left atrial appendage thrombus in mitral stenosis after warfarin therapy. Am Heart J 121:1232–1234

    CAS  PubMed  Google Scholar 

  82. Grossman W, Baim DS (2006) Grossman’s Cardiac catheterization, Angiography and Intervention. 7th ed. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  83. Vahanian A, Palacios IF (2004) Percutaneous approaches to valvular disease. Circulation 109:1572–1579

    PubMed  Google Scholar 

  84. Dean LS, Mickel M, Bonan R, et al (1996) Four-years follow up of patients undergoing percutaneous balloon mitral commissurotomy. A report from the National Heart, Lung, and Blood Institute Balloon Valvuloplasty Registry. J Am Coll Cardiol 28:1452–1457

    CAS  PubMed  Google Scholar 

  85. Palacios IF, Tuzuc ME, Weyman AE, et al (1995) Clinical Follow-up of patients undergoing percutaneous mitral balloon valvotomy. Circulation 91:671–676

    CAS  PubMed  Google Scholar 

  86. Pan M, Medina A, Lezo JJ, et al (1993) Factors determining late success after mitral balloon valvulotomy. Am J Cardiol 71:1181–1186

    CAS  PubMed  Google Scholar 

  87. Arora R, Kalra GS, Murty GS, et al (1994) Percutaneous transatrial mitral commissurotomy: immediate and intermediate results. J Am Coll Cardiol 23:1327–1332

    CAS  PubMed  Google Scholar 

  88. Palacios IF, Block PC, Wilkins GT, Weyman AE (1989) Follow-up of patients undergoing percutaneous mitral balloon valvotomy. Analysis of factors determining restenosis. Circulation 79:573–579

    CAS  PubMed  Google Scholar 

  89. Thomas MR, Monaghan MJ, Michalis LK, et al (1993) Echocardiographic restenosis after successful balloon dilatation of the mitral valve with the Inoue balloon: experience of a United Kingdom centre. Br Heart J 69:418–423

    CAS  PubMed  Google Scholar 

  90. Iung B, Garbarz E, Michaud P, et al (2000) Immediate and midterm results of repeat percutaneous mitral commissurotomy for restenosis following earlier percutaneous mitral commissurotomy. Eur Heart J 21:1683–1689

    CAS  PubMed  Google Scholar 

  91. Nkomo VT, Gardin JM, Skelton TN, et al (2006) Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011

    PubMed  Google Scholar 

  92. Marelli AJ, Mackie AS, Ionescu-Ittu R, et al (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115:163–172

    PubMed  Google Scholar 

  93. Robbins JD, Maniar PB, Cotts W, et al (2003) Prevalence and severity of mitral regurgitation in chronic systolic heart failure. Am J Cardiol 91:360–362

    PubMed  Google Scholar 

  94. Bursi F, Enriquez-Sarano M, Nkomo VT, et al (2005) Heart failure and death after myocardial infarction in the community: the emer ging role of mitral regurgitation. Circulation 111:295–301

    PubMed  Google Scholar 

  95. Carpentier A (1983) Cardiac valve surgery: The French correction. J Thorac Cardiovasc Surg 86:323–337

    CAS  PubMed  Google Scholar 

  96. Carpentier A, Chauvaud S, Fabiani J, et al (1980) Reconstructive surgery of mitral valve incompetence: Ten-year appraisal. J Thorac Cardiovasc Surg 79:338–348

    CAS  PubMed  Google Scholar 

  97. Wells FC (1996) Conservation and surgical repair of the mitral valve. In: Wells FC, Shapiro LM (ed) Mitral valve disease. Butterworth-Heineman, Oxford

    Google Scholar 

  98. Luc A, Piérard and Blase A, Carabello (2010) Ischaemic mitral regurgitation: pathophysiology, outcomes and the conundrum of treatment. Europ Heart J 31:2996–3005

    Google Scholar 

  99. Chaput M, Handschumacher MD, Tournoux F, et al (2008) Mitral leaflet adaptation to ventricular remodelling occurrence and adequacy in patients with functional mitral regurgitation. Circulation 118:845–852

    PubMed  Google Scholar 

  100. Levine RA, Schwammenthal E (2005) Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation 112:745–758

    PubMed  Google Scholar 

  101. Anyanwu AC, Adams DH (2007) Etiologic classification of degenerative mitral valve disease: Barlow’s disease and fibroelastic deficiency. Semin Thorac Cardiovasc Surg 19:90–96

    PubMed  Google Scholar 

  102. Chikwe J, Adams DH (2009) State of the Art: Degenerative Mitral Valve Disease. Heart Lung Circ 18:319–329

    PubMed  Google Scholar 

  103. Fenster MS, Feldman MD (1995) Mitral regurgitation: An overview. Curr Probl Cardiol 20:193–280

    CAS  PubMed  Google Scholar 

  104. Luther RR, Meyers SN (1974) Acute mitral insuf ficiency secondary to ruptured chordae tendineae. Arch Intern Med 134:568–568

    CAS  PubMed  Google Scholar 

  105. Hansen DE, Sarris GE, Niczyporuk MA, et al (1989) Physiologic role of the mitral apparatus in left ventricular regional mechanics, contraction synergy, and global systolic performance. J Thorac Cardiovasc Surg 97:521–533

    CAS  PubMed  Google Scholar 

  106. Yun KL, Niczyporuk MA, Sarris GE, et al (1991) Importance of mitral sub valvular apparatus in terms of cardiac energetics and systolic mechanics in the ejecting canine heart. J Clin Invest 87:247–254

    CAS  PubMed  Google Scholar 

  107. Yiu SF, Enriquez-Sarano M, Tribouilloy C, et al (2000) Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction. Circulation 102:1400–1406

    CAS  PubMed  Google Scholar 

  108. Grigioni F, Enriquez-Sarano M, Zehr KJ, et al (2001) Ischemic mitral regurgitation: Long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764

    CAS  PubMed  Google Scholar 

  109. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, et al (2005) Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352:875–883

    CAS  PubMed  Google Scholar 

  110. Waller BF, Howard J, Fess S (1994) Pathology of mitral valve stenosis and pure mitral regurgitation, part II. Clin Cardiol 17:395–402

    CAS  PubMed  Google Scholar 

  111. Grossman W (2006) Profiles in valvular heart disease. In: Baim DS (ed) Cardiac catheterization, angiography and intervention. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  112. Ross J Jr (1974) Adaptations of the left ventricle to chronic volume overload. Circ Res 35:64–70

    PubMed  Google Scholar 

  113. Yun KL, Rayhill SC, Niczyporuk MA, et al (1992) Left ventricular mechanics and energetics in the dilated canine heart: Acute versus chronic mitral regurgitation. J Thorac Cardiovasc Surg 104:26–39

    CAS  PubMed  Google Scholar 

  114. Carabello BA, Nakano K, Corin W, et al (1989) Left ventricular function in experimental volume overload hypertrophy. Am J Physiol 256:974–981

    Google Scholar 

  115. Urabe Y, Mann DL, Kent RL, et al (1992) Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ Res 70:131–147

    CAS  PubMed  Google Scholar 

  116. Starling MR, Kirsh MM, Montgomery DG, et al (1993) Impaired left ventricular contractile function in patients with long-term mitral regurgitation and normal ejection fraction. J Am Coll Cardiol 22:239–250

    CAS  PubMed  Google Scholar 

  117. Nakano K, Swindle MM, Spinale F, et al (1991) Depressed contractile function due to canine mitral regurgitation improves after correction of the volume overload. J Clin Invest 87:2077–2086

    CAS  PubMed  Google Scholar 

  118. Carabello BA, Crawford FA Jr (1997) Valvular heart disease. N Engl J Med 337:32–41

    CAS  PubMed  Google Scholar 

  119. Carabello BA, Nolan SP, McGuire LB (1981) Assessment of preoperative left ventricular function in patients with mitral regurgitation: Value of the end-systolic wall stress—end-systolic volume ratio. Circulation 64:1212–1217

    CAS  PubMed  Google Scholar 

  120. Carabello BA, Williams H, Gash AK, et al (1986) Hemodynamic predictors of outcome in patients undergoing valve replacement. Circulation 74:1309–1316

    CAS  PubMed  Google Scholar 

  121. Grossman W, Braunwald E, Mann T, et al (1977) Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation 56:845

    CAS  PubMed  Google Scholar 

  122. Borow KM, Green LH, Mann T, et al (1980) End-systolic volume as a predictor of postoperative left ventricular performance in volume overload from valvular regurgitation. Am J Med 68:655–653

    CAS  PubMed  Google Scholar 

  123. Bursi F, Enriquez-Sarano M, Jacobsen SJ, et al (2006) Mitral regurgitation after myocardial infarction:a review. Am J Med 119:103–112

    PubMed  Google Scholar 

  124. He S, Fontaine AA, Schwammenthal E, et al (1997) Integrated mechanism for functional mitral regurgitation: leaflet restriction v ersus coapting force: in vitro studies. Circulation 96:1826–1834

    CAS  PubMed  Google Scholar 

  125. Messas E, Guerrero JL, Handschumacher MD, et al (2001) Chordal cutting: a new therapeutic approach for ischemic mitral regurgitation. Circulation 104:1958–1963

    CAS  PubMed  Google Scholar 

  126. Watanabe N, Ogasawara Y, Yamaura Y, et al (2005) Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J Am Coll Cardiol 45:763–769

    PubMed  Google Scholar 

  127. Kongsaerepong V, Shiota M, Gillinov AM, et al (2006) Echocardiographic predictors of successful versus unsuccessful mitral valve repair in ischemic mitral regurgitation. Am J Cardiol 98:504–508

    PubMed  Google Scholar 

  128. Olson L, Subramanian R, Ackermann D, et al (1987) Surgical pathology of the mitral valve: a study of 712 cases spanning 21 years. Mayo Clin Proc 62:22–24

    CAS  PubMed  Google Scholar 

  129. Schwammenthal E, Chen C, Benning F, et al (1994) Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322

    CAS  PubMed  Google Scholar 

  130. Lebrun F, Lancellotti P, Piérard LA (2001) Quantitation of functional mitral regurgitation during bicycle exercise in patients with heart failure. J Am Coll Cardiol 38:1685–1692

    CAS  PubMed  Google Scholar 

  131. Di Salvo T, Acker MA, Dec GW, et al (2010) Mitral valve surgery in advanced heart failure. J_Am Coll Cardiol 55:271–282

    PubMed  Google Scholar 

  132. Otsuji Y, Handschumacher MD, Schwammenthal E, et al (1997) Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation 96:1999–2008

    CAS  PubMed  Google Scholar 

  133. Sabbah HN, Kono T, Stein PD, et al (1992) Left ventricular shape changes during the course of evolving heart failure. Am J Physiol 263:266–270

    Google Scholar 

  134. Carabello BA (2004) Ischemic mitral regurgitation and ventricular remodelling. J Am Coll Cardiol 43:384–385

    PubMed  Google Scholar 

  135. Rahimtoola SH, Dell’Italia LJ (2004) Mitral valve disease. In: Fuster V, Alexander RW, O’Rourke RA, et al. editors. Hurst’s The Heart, 11 ed. McGraw-Hill, New York, pp.1669–1695

    Google Scholar 

  136. Lancellotti P, Moura L, Pierard LA, et al (2010) European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 11:307–332

    PubMed  Google Scholar 

  137. Zoghbi WA, Eriquez-Sarano M, Foster E, et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    PubMed  Google Scholar 

  138. Bargiggia GS, Tronconi L, Sahn DJ, et al (1991) A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 84:1481–1489

    CAS  PubMed  Google Scholar 

  139. Simpson IA, Shiota T, Gharib M, et al (1996) Current status of flow convergence for clinical applications: is it a leaning tower of “PISA”? J Am Coll Cardiol 27:504–509

    CAS  PubMed  Google Scholar 

  140. Baumgartner H, Schima H, Kuhn P (1991) Value and limitations of proximal jet dimensions for the quantitation of valvular regurgitation: an in vitro study using Doppler flow imaging. J Am Soc Echocardiogr 4:57–66

    CAS  PubMed  Google Scholar 

  141. Sahn DJ (1988) Instrumentation and physical factors related to visualization of stenotic and regurgitant jets by Doppler color flow mapping. J Am Coll Cardiol 12:1354–1365

    CAS  PubMed  Google Scholar 

  142. Pu M, Griffin BP, Vandervoort PM, et al (1999) The value of assessing pulmonary venous flow velocity for predicting severity of mitral regurgitation: a quantitative assessment integrating left ventricular function. J Am Soc Echocardiogr 12:736–743

    CAS  PubMed  Google Scholar 

  143. Thomas L, Foster E, Schiller NB (1998) Peak mitral inflow velocity predicts mitral regurgitation severity. J Am Coll Cardiol 31:174–179

    CAS  PubMed  Google Scholar 

  144. Lancellotti P, Gérard P, Piérard LA (2005) Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J 26:1528–1532

    PubMed  Google Scholar 

  145. Enriquez-Sarano M, Basmadjian AJ, Rossi A, et al (1999) Progression of mitral regurgitation: a prospective Doppler echocardiographic study. J Am Coll Cardiol 34:1137–1144

    CAS  PubMed  Google Scholar 

  146. Lancellotti P, Lebrun F, Piérard LA (2003) Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 42:1921–1928

    PubMed  Google Scholar 

  147. Chandra S, Salgo IS, Sugeng L, et al (2011) Characterization of de generative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ Cardiovasc Imaging 4:24–32

    PubMed  Google Scholar 

  148. Pepi M, Tamborini G, Maltagliati A, et al (2006) Head to head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol 48:2524–2530

    PubMed  Google Scholar 

  149. Maffessanti F, Marsan NA, Tamborini G, et al (2011) Quantitative analysis of mitral valve apparatus in mitral valve prolapsed before and after annuloplasty: a three-dimensional intraoperative transesophageal study. J Am Soc Echocardiogr 24:405–413

    PubMed  Google Scholar 

  150. Grewal J, Mankad S, Freeman WK, et al (2009) Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J Am Soc Echocardiogr 22:34–41

    PubMed  Google Scholar 

  151. Sugeng L, Shernan SK, Weinert L, et al (2008) Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. J Am Soc Echocardiogr 21:1347–1354

    PubMed  Google Scholar 

  152. Tsang W, Weinert L, et al (2011) The value of three-dimensional echocardiography derived mitral valve parametric maps and the role of experience in the diagnosis of pathology. J Am Soc Echocardiogr 24:860–867

    PubMed  Google Scholar 

  153. Gutierrez-Chico JL, Zamorano Gomez JL, Rodrigo-Lopez JL, et al (2008) Accuracy of real-time 3-dimensional echocardiography in the assessment of mitral prolapse. Is transesophageal echocardiography still mandatory? Am Heart J 155:694–698

    PubMed  Google Scholar 

  154. Biaggi P, Gruner C, Jedrzkiewicz S, et al (2011) Assessment of Mitral Valve Prolapse by 3D TEE. J Am Coll Cardiol Img 4:94–97

    Google Scholar 

  155. Morris M, Araoz P (2011) Advanced imaging of mitral valve disease. US Cardiology 8:24–29

    Google Scholar 

  156. Chen JJ, Manning MA, Frazier AA (2009) CT angiography of the cardiac valves: normal, diseased, and postoperative appearances. Radiographics 29:1393–1412

    PubMed  Google Scholar 

  157. Glockner JF, Johnston DL, McGee KP (2003) Evaluation of cardiac valvular disease with MR imaging: qualitative and quantitative techniques. Radiographics 23:9

    Google Scholar 

  158. Schnyder PA, Sarraj AM, Duvoisin BE, et al (1993) Pulmonary edema associated with mitral regurgitation: prevalence of predominant involvement of the right upper lobe. AJR Am J Roentgenol 161:33–36

    CAS  PubMed  Google Scholar 

  159. Hayek E, Gring CN, Griffin BP (2005) Mitral valve prolapse. Lancet 365:507–518

    PubMed  Google Scholar 

  160. D’Ancona G, Mamone G, Marrone G, et al (2007) Ischemic mitral valve regurgitation: the new challenge for magnetic resonance imaging. Eur J Cardiothorac Surg 32:475–480

    Google Scholar 

  161. Rubinshtein R, Glockner JF, Ommen SR, et al (2010) Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail 3:51–58

    PubMed  Google Scholar 

  162. Guo YK, Yang ZG, Ning G, et al (2009) Isolated mitral regurgitation: quantitative assessment with 64-section multidetector CT-comparison with MR imaging and echocardiography. Radiology 252:369–376

    PubMed  Google Scholar 

  163. Gelfand EV, Hughes S, Hauser TH, et al (2006) Severity of mitral and aortic regurgitation as assessed by cardiovascular magnetic resonance: optimizing correlation with Doppler echocardiography. J Cardiovasc Magn Reson 8:503–507

    PubMed  Google Scholar 

  164. Braunwald E, Awe W (1963) The syndrome of severe mitral regurgitation with normal left atrial pressure. Circulation 27:29–35

    CAS  PubMed  Google Scholar 

  165. Delahaye JP, Gare JP, Viguier E, et al (1991) Natural history of se vere mitral regurgitation. Eur Heart J 12:5–9

    PubMed  Google Scholar 

  166. Enriquez-Sarano M, Freeman WK, Tribouilloy, et al (1999) Functional anatomy of mitral regurgitation: accuracy and outcome implications of TEE. J Am Coll Cardiol 34:1129–1136

    CAS  PubMed  Google Scholar 

  167. Thamilarasan M, Griffin B (2002) Choosing the most appropriate valve operation and prosthesis. Cleveland Clin J Med 69:668–703

    Google Scholar 

  168. Lee EM, Shapiro LM, Wells FC (1997) Superiority of mitral valve repair in surgery for degenerative mitral regurgitation. Eur Heart J 18:655–663

    CAS  PubMed  Google Scholar 

  169. Enriquez-Sarano M, Schaff HV, Orszulak TA, et al (1995) Valve repair improves the outcome of surgery for mitral regurgitation. A multivariate analysis. Circulation 91:1022–1228

    CAS  PubMed  Google Scholar 

  170. Trichon BH, Felker GM, Shaw LK et al (2003) Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am J Cardiol 91:538–543

    PubMed  Google Scholar 

  171. Ling LH, Enriquez-Sarano M, Seward JB, et al (1996) Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med 335:1417–1423

    CAS  PubMed  Google Scholar 

  172. Tribouilloy CM, Enriquez-Sarano M, Schaff HV, et al (1999) Impact of preoperative symptoms on survival aftersurgical correction of organic mitral regurgitation: rationale for optimizing surgical implications. Circulation 99:400–405

    CAS  PubMed  Google Scholar 

  173. Crawford MH, Souchek J, Oprian CA, et al (1990) Determinants of survival and left ventricular performance after mitral valve replacement. Department of Veterans Affairs Cooperative Study on Valvular Heart Disease. Circulation 81:1173–1181

    CAS  PubMed  Google Scholar 

  174. Enriquez-Sarano M, Tajik AJ, Schaff HV, et al (1994) Echocardiographic prediction of left ventricular function after correction of mitral regurgitation: results and clinical implications. J Am Coll Cardiol 24:1536–1543

    CAS  PubMed  Google Scholar 

  175. Sherrid MV, Clark RD, Cohn K (1979) Echocardiographic analysis of left atrial size before and after operation in mitral valve disease. Am J Cardiol 43:171–178

    CAS  PubMed  Google Scholar 

  176. Nashef SA, Roques F, Michel P, et al (1999) European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiothorac Surg 16:9–13

    CAS  PubMed  Google Scholar 

  177. Enriquez-Sarano M, Rossi A, Seward JB, et al (1997) Determinants of pulmonary hypertension in left ventricular dysfunction. J Am Coll Cardiol 29:153–159

    CAS  PubMed  Google Scholar 

  178. Carabello BA (2008) The current therapy for mitral regurgitation. J Am Coll Cardiol 52:319–326

    PubMed  Google Scholar 

  179. Bishay ES, McCarthy PM, Cosgrove DM, et al (2000) Mitral valve surgery in patients with severe left ventricular dysfunction. Eur J Cardiothorac Surg 17:213–221

    CAS  PubMed  Google Scholar 

  180. Wu AH, Aaronson KD, Bolling SF, et al (2005) Impact of mitral valve annuloplasty on mortality risk in patients with mitral regurgitation and left ventricular systolic dysfunction. J Am Coll Cardiol 45:381–387

    PubMed  Google Scholar 

  181. Gaasch WH, Meyer TE (2008) Left ventricular response to mitral regurgitation: implications for management. Circulation 118:2298–2303

    PubMed  Google Scholar 

  182. Mirabel M, Iung B, Baron G, et al (2007) What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J 28:1358–1365

    PubMed  Google Scholar 

  183. Maisano F, Schreuder JJ, Oppizzi M, et al (2000) The double-orifice technique as a standardized approach, to treat mitral regurgitation due to severe myxomatous disease: surgical technique. Eur J Cardiothorac Surg 17: 201–205

    CAS  PubMed  Google Scholar 

  184. Lorusso R, Borghetti V, Totaro P, et al (2001) The double-orifice technique for mitral valve reconstruction: predictors of outcome. Eur J Cardiothorac Surg 20:583–589

    CAS  PubMed  Google Scholar 

  185. Bagai J, Zhao D (2008) Subcutaneous “figure-of-eight” stitch to achieve hemostasis after removal of large-caliber femoral venous sheaths. Cardiac Interventions Today July/August: 22–23

    Google Scholar 

  186. Alfieri O, Maisano F, DeBonis M, et al (2001) The edge-to-edge technique in mitral valve repair: a simple solution for complex problems. J Thorac Cardiovasc Surg 122:674–681

    CAS  PubMed  Google Scholar 

  187. Roques F, Nashef SA, Michel P, et al (2001) EuroSCORE study group. Risk factor for early mortality after valve surgery in Europe in the 1990s: lessons from the EuroSCORE pilot program. J Heart Valve Dis 10:572–577

    CAS  PubMed  Google Scholar 

  188. Feldman T, Wasserman HS, Herrmann HC, et al (2006) Percutaneous mitral valve repair using the edge-to-edge technique six-month results of the EVEREST phasei clinical trial. J Am Coll Card 46:2134–2140

    Google Scholar 

  189. Silvestry FE, Rodriguez LL, Herrmann HC, et al (2007) Echocardiographic guidance and assessment of percutaneous repair for mitral regurgitation with the Evalve MitraClip: lessons learned from EVEREST I. J Am Soc Echocardiogr 20:1131–1140

    PubMed  Google Scholar 

  190. Rohatgi S, Wasserman HS, Block PC, et al (2005) Mitral stenosis is not produced by percutaneous edge-to-edge repair of mitral regurgitation. Circulation 112:520

    Google Scholar 

  191. Herrmann HC, Kar S, Siegal R, et al (2009) Effect of percutaneous mitral repair with the MitraClip device on mitral valve area and gradient. EuroInter 4:437–442

    Google Scholar 

  192. De Bonis M, Lapenna E, La Canna G, et al (2005) Mitral valve repair for functional mitral regurgitation in end-stage dilated cardiomyopathy. Circulation 112:402–408

    Google Scholar 

  193. Calafiore AM, Iacò AL, Contini M, et al (2008) Mitral valve repair for degenerative mitral regurgitation. J Cardiovasc Med 8:114–118

    Google Scholar 

  194. Foster E, Wasserman HS, Gray W, et al (2007) Quantitative assessment of severity of mitral regurgitation by serial echocardiography in a multicenter clinical trial of percutaneous mitral valve repair. Am J Cardiol 100:1577–1583

    PubMed  Google Scholar 

  195. Herrmann HC, Wasserman HS, Whitlow P, et al (2005) Percutaneous edge-to-edge mitral valve repair using the Evalve MitraClipTM device: initial one-year results of the EVEREST Phase 1 Trial. Circulation 112:520

    Google Scholar 

  196. Zamorano JL, Badano LP, Bruce C et al (2011) EAE/ASE Recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. J Am Soc Echocardiogr 24:937–965

    PubMed  Google Scholar 

  197. Biner S, Perk G, Saibal Kar et al (2011) Utility of combined tw o-dimensional and three-dimensional transesophageal imaging for catheter-based mitral valve clip repair of mitral regurgitation. J Am Soc Echocardiogr 24:611–617

    PubMed  Google Scholar 

  198. Feldman T, Kar S, Rinaldi M, et al for the EVEREST Investigators (2009) Percutaneous mitral repair with the mitraclip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort. J Am Coll Cardiol 54:686–694

    PubMed  Google Scholar 

  199. Feldman T, Foster E, Glower DG, et al (2011) Percutaneous repair or surgery for mitral regurgitation. N Engl J Med 364:1395–1406

    CAS  PubMed  Google Scholar 

  200. Maisano F, Franzen O, Baldus S, et al (2011) MitraClip™ therapy demonstrates favourable midterm outcomes in ACCESS-EUROPE heart failure patients with left ventricular ejection fraction. Preliminary report from the 6-month ACCESS-EU analysis cohort. EuroIntervention 7M

    Google Scholar 

  201. Herrmann HC, Rohatgi S, Wasserman, et al (2006) Mitral valve hemodynamic effects of percutaneous edge-to-edge repair with the MitraClip™ device for mitral regurgitation. Cathet Cardiovasc Interv 68:821–828

    Google Scholar 

  202. Kar S (2011) Analysis of the EVEREST II High Risk Registry. Two year outcomes. ACC Meeting 2011

    Google Scholar 

  203. Tamburino C, Ussia GP, Maisano F, et al (2010) Percutaneous mitral valve repair with the MitraClip™ system: acute results from a real world setting. Eur Heart J 31:1382–1389

    CAS  PubMed  Google Scholar 

  204. Franzen O, Baldus S, Rudolph V, et al (2010) Acute outcomes of MitraClip™ therapy for mitral regurgitation in high-surgical-risk patients: emphasis on adverse valve morphology and severe left ventricular dysfunction. Eur Heart J 31:1373–1381

    PubMed  Google Scholar 

  205. Franzen O, van der Heyden J, Baldus S, et al (2011) MitraClip™ therapy in patients with end- stage systolic heart failure. Eur J Heart Fail 13:569–576

    PubMed  Google Scholar 

  206. Ussia GP, Cammalleri V, Sarkar K, et al (2012) Quality of life following percutaneous mitral valve repair with the MitraClip™ System. Int J Cardiol 155:194–200

    PubMed  Google Scholar 

  207. Auricchio A, Schillinger W, Meyer S, et al (2011) Correction of mitral regurgitation in non-responders to cardiac resynchronization therapy by MitraClip™ improves symptoms and promotes reverse remodeling. J Am Coll Cardiol 58:2183–2189

    PubMed  Google Scholar 

  208. Schillinger W, Athanasiou T, Weicken N, et al (2011) Impact of the learning curve on outcomes after percutaneous mitral valve repair with MitraClip and lessons learned after the first 75 consecutive patients. Eur J Heart Fail 13:1331–1339

    PubMed  Google Scholar 

  209. Grossi EA, Goldberg JD, La Pietra A, et al (2001) Ischemic mitral valve reconstruction and replacement: comparison of long-term survival and complications. J Thorac Cardiovasc Surg 122:1107–1124

    CAS  PubMed  Google Scholar 

  210. Maniu CV, Patel JB, Reuter DG, et al (2004) Acute and chronic reduction of functional mitral regurgitation in experimental heart failure by percutaneous mitral annuloplasty. J Am Coll Cardiol 44:1652–1661

    PubMed  Google Scholar 

  211. Piazza N, Bonan R (2007) Transcatheter mitral valve repair for functional mitral regurgitation: coronary sinus approach. J Interv Cardiol 20:495–508

    PubMed  Google Scholar 

  212. Maselli D, Guarracino F, Chiaramonti F, et al (2006) Percutaneous mitral annuloplasty: an anatomic study of human coronary sinus and its relation with mitral valve annulus and coronary arteries. Circulation 114:377–380

    PubMed  Google Scholar 

  213. Lansac E, Di Centa I, Al Attar N, et al (2008) Percutaneous mitral annuloplasty through the coronary sinus: an anatomic point of view. J Thorac Cardiovasc Surg 135:376–381

    PubMed  Google Scholar 

  214. Choure AJ, Garcia MJ, Hesse B, et al (2006) In vivo analysis of the anatomical relationship of coronary sinus to mitral annulus and left circumflex coronary artery using cardiac multi-detector computed tomography: implications for percutaneous coronary sinus mitral annuloplasty. J Am Coll Cardiol 48:1938–1945

    PubMed  Google Scholar 

  215. Chiribiri A, Kelle S, Kohler U, et al (2008) Magnetic resonance cardiac vein imaging: relation to mitral valve annulus and left circumflex coronary artery. J Am Coll Cardiol Img 1:729–738

    Google Scholar 

  216. Goldberg SL, Van Bibber R, Schofer J, et al (2008) The frequency of coronary artery compression and management using a removable mitral annuloplasty device in the coronary sinus. J Am Coll Cardiol. 51:28

    Google Scholar 

  217. Webb JG, Harnek J, Munt BI, et al (2006) Percutaneous transv enous mitral annuloplasty initial human experience with device implantation in the coronary sinus. Circulation 113:851–855

    PubMed  Google Scholar 

  218. Webb JG (2009) MONARC Percutaneous transvenous mitral annuloplasty. Presented at Transcatheter Valve Therapies (TVT) Summit, Seattle

    Google Scholar 

  219. Frerker C, Schäfer U, Schewel D, et al (2009) Percutaneous approaches for mitral valve interventions, a real alternative technique for standard cardiac surgery? Herz 34:444–450

    PubMed  Google Scholar 

  220. Harnek J (2009) 2-year interim results of the percutaneous MONARC™ system for the treatment of functional mitral regurgitation. TCT, 21–25 September 2009, San Francisco

    Google Scholar 

  221. Kaye DM, Byrne M, Alferness C, et al (2003) Feasibility and short-term eficacy of percutaneous mitral annular reduction for the therap y of heart failure-induced mitral regurgitation. Circulation 108:1795–1797

    PubMed  Google Scholar 

  222. Schofer J, Siminiak T, Haude M, et al (2009) Percutaneous mitral annuloplasty for functional mitral regurgitation: results of the CARILLON mitral annuloplasty device European Union study. Circulation 120:326–333

    PubMed  Google Scholar 

  223. Goldberg SL (2011) Cardiac dimension CARILLON recent clinical results, future directions. Presented at TVT Meeting 2011

    Google Scholar 

  224. Liddicoat JR, MacNeill BD, Gillinov AM, et al (2003) Percutaneous mitral valve repair: a feasibility study in an ovine model of acute ischemic mitral regurgitation. Catheter Cardiovasc Interv 60:410–416

    PubMed  Google Scholar 

  225. Daimon M, Shiota T, Gillinov AM, et al (2005) Percutaneous mitral valve repair for chronic ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study in an ovine model. Circulation 111:2183–2189

    PubMed  Google Scholar 

  226. Dubreuil O, Basmadjian A, Ducharme A, et al (2007) Percutaneous mitral valve annuloplasty for ischemic mitral regurgitation: first in man experience with a temporary implant. Catheter Cardiovasc Interv 69:1053–1061

    PubMed  Google Scholar 

  227. Ellis S (2008) Percutaneous mitral annuloplasty: Viacor PTOLEMY I update. Presented at Transcatheter Cardiovascular Therapeutics (TCT) Congress 2008, Washington DC

    Google Scholar 

  228. Ellis S (2011) Percutaneous mitral Annuloplasty Viacor PTOLEMY-2 Update. Ultimate device failure analysis. Presented at TCT Meeting 2011

    Google Scholar 

  229. Gillinov AM, Cosgrove DM, Blackstone EH, et al (1998) Durability of mitral valve repair for degenerative disease. J Thorac Cardiovasc Surg 116:734–743

    CAS  PubMed  Google Scholar 

  230. Tibayan FA, Rodriguez F, Liang D, et al (2003) Paneth suture annuloplasty abolishes acute ischemic mitral regurgitation but preserves annular and leaflet dynamics. Circulation 108(SuppII):128–133

    Google Scholar 

  231. Burr LH, Krayenbuhl C, Sutton MS (1977) The mitral plication suture: a new technique of mitral valve repair. J Thorac Cardiovasc Surg 73:589–595

    CAS  PubMed  Google Scholar 

  232. Nagy ZL, Peterffy A (2000) Mitral annuloplasty with a suture technique. Eur J Cardio-Thorac Surg 18:739–741

    CAS  Google Scholar 

  233. Buellesfeld L (2009) Mitralign: From Trident to Bident (Clinical Trial Update) Presented at Transcatheter Cardiovascular Therapeutics (TCT) Congress, 2009

    Google Scholar 

  234. Heuser RR, Witzel T, Dickens D, et al (2008) Percutaneous treatment for mitral regurgitation: the QuantumCor system. J Interv Cardiol 21:178–182

    PubMed  Google Scholar 

  235. Goel R, Witzel T, Dickens D, et al (2009) The QuantumCor device for treating mitral regurgitation: an animal study. Catheter Cardiovasc Interv 74:43–48

    PubMed  Google Scholar 

  236. Heuser R (2009) QuantumCor: Mitral Annular Collagen Modif ication. Presented at Transcatheter Cardiovascular Therapeutics (TCT) Congress, 2009

    Google Scholar 

  237. Starksen N (2008) Guided Delivery System. Presented at Transcatheter Cardiovascular Therapeutics (TCT) Congress, 2008

    Google Scholar 

  238. Jilaihawi H, Virmani R, Nakagawa H, et al (2010) Mitral annular reduction with subablative therapeutic ultrasound: pre-clinical evaluation of the ReCor device. EuroIntervention 6:54–62

    PubMed  Google Scholar 

  239. Kuch KH (2011) HIFU-based mitral annuloplasty: RECOR. Presented at TCT Meeting 2011.

    Google Scholar 

  240. Kono T, Sabbah HN, Rosman H, et al (1992) Left ventricular shape is the primary determinant of functional mitral regurgitation in heart failure. J Am Coll Cardiol 20:1594–1598

    CAS  PubMed  Google Scholar 

  241. Sabbah HN, Rosman H, Kono T, et al (1993) On the mechanism of functional mitral regurgitation. Am J Cardiol 72:1074–1076

    CAS  PubMed  Google Scholar 

  242. Pedersen WR, Block PC, Feldman TE (2006) The iCoapsys Repair System for the percutaneous treatment of functional mitral insufficiency. Eurointervention 1:44–48

    Google Scholar 

  243. Pedersen WR, Block P, Leon M, et al (2008) iCoapsys mitral valve repair system: Percutaneous implantation in an animal model. Catheter Cardiovasc Interv 72:125–131

    PubMed  Google Scholar 

  244. Rogers JH, Macoviak JA, Rahdert DA, et al (2006) Percutaneous septal sinus shortening: a novel procedure for the treatment of functional mitral regurgitation. Circulation 113:2329–2334

    PubMed  Google Scholar 

  245. Webb JG (2007) Transcatheter valve in valve implants for failed prosthetic valves. Catheter Cardiovasc Interv 70:760–764

    Google Scholar 

  246. De Weger A, Tavilla G, Ng AC, et al (2010) Successful transapical transcatheter valve implantation within a dysfunctional mitral bioprosthesis. JACC Cardiovasc Imaging 3:222–223

    PubMed  Google Scholar 

  247. Seiffert M, Franzen O, Conradi L, et al (2010) Series of transcatheter valve-in-valve implantations in high-risk patients with de generated bioprostheses in aortic and mitral position. Catheter Cardiovasc Interv 76:608–615

    PubMed  Google Scholar 

  248. Boudjemline Y, Agnoletti G, Bonnet D, et al (2005) Steps toward percutaneous replacement of atrioventricular valves: an experimental study. J Am Coll Cardiol 46:360–365

    PubMed  Google Scholar 

  249. Ma LTP, Huber CH, Taub S, et al (2005) Double-crowned valved stents for off-pump mitral valve replacement. Eur J Cardiothor Surg 28:194–199

    Google Scholar 

  250. Lozonschi LQR, Edwards NM, Cremer J, et al (2008) Transapical mitral valved stent implantation. Ann Thorac Surg 86:745–748

    PubMed  Google Scholar 

  251. Herrmann HC (2009) Transcatheter mitral valve implantation. The advantages of MIS-tMVI may make it the ideal choice for high-risk patients. Cardiac Interventions Today, August/September

    Google Scholar 

  252. Maisano F, Michev I, Rowe S, et al (2009) Transapical endovascular implantation of neochordae using a suction and suture device. Eur J Cardiothorac Surg 36:118–122

    PubMed  Google Scholar 

  253. Blondheim DS, Jacobs LE, Kotler MN, et al (1991) Dilated cardiomyopathy with mitral regurgitation: decreased survival despite alow frequency of left ventricular thrombus. Am Heart J 122:763–771

    CAS  PubMed  Google Scholar 

  254. Di Biase L, Auricchio A, Mohanty P, et al (2011) Impact of cardiac resynchronization therapy on the severity of mitral regurgitation. Europace 13:829–838

    PubMed  Google Scholar 

  255. Dickstein K, Vardas PE, Auricchio A, et al (2010) Focused Update of ESC Guidelines on device therapy in heart failure: an update of the 2008 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure and the 2007 ESC Guidelines for cardiac and resynchronization therapy. Developed with the special contribution of the Heart Failure Association and the European Heart Rhythm Association. Europace 12:1526–1536

    PubMed  Google Scholar 

  256. Cazeau S, Leclercq C, Lavergne T, et al (2001) Multisite stimulation in cardiomyopathies (MUS-TIC) study investigators. Effect of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880

    CAS  PubMed  Google Scholar 

  257. Abraham WT, Fisher WG, Smith AL, et al (2002) MIRACLE Study Group. Multicenter In-Sync randomized clinical evaluation. Cardiac resynchronization therapy in chronic heart failure. N Engl J Med 346:1845–1853

    PubMed  Google Scholar 

  258. Cleland JG, Daubert JC, Erdmann E, et al (2005) Cardiac resynchronization-heart failure (CARE-HF) study investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549

    CAS  PubMed  Google Scholar 

  259. Breithardt OA, Sinha AM, Schwammenthal E, et al (2003) Acute effects of cardiac resynchronization therapy on functional mitral regurgitation in advanced systolic heart failure. J Am Coll Cardiol 41:765–770

    PubMed  Google Scholar 

  260. Kanzaki H, Bazaz R, Schwartzman D, et al (2004) A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy. J Am Coll Cardiol 44:1619–1625

    PubMed  Google Scholar 

  261. Porciani MC, Macioce R, Demarchi G, et al (2006) Effects of cardiac resynchronization therapy on the mechanisms underlying functional mitral regurgitation in congestive heart failure. Eur J Echocardiogr 7:31–39

    PubMed  Google Scholar 

  262. Ypenburg C, Lancellotti P, Tops LF, et al (2007) Acute effects of initiation and withdrawal of cardiac resynchronization therapy on papillary muscle dyssynchrony and mitral regurgitation. J Am Coll Cardiol 50:2071–2017

    PubMed  Google Scholar 

  263. Ypenburg C, Lancellotti P, Tops LF, et al (2008) Mechanism of improvement in mitral regurgitation after cardiac resynchronization therapy. Eur Heart J 29:757–765

    PubMed  Google Scholar 

  264. Brandt RR, Reiner C, Arnold R, et al (2006) Contractile response and mitral regurgitation after temporary interruption of long-term cardiac resynchronization therapy. Eur Heart J 27:187–192

    PubMed  Google Scholar 

  265. Nof E, Glikson M, Bar-Lev D, et al (2006) Mechanism of diastolic mitral regurgitation in candidates for cardiac resynchronization therapy. Am J Cardiol 97:1611–1614

    PubMed  Google Scholar 

  266. Ypenburg C, van Bommel RJ, Borleffs CJ, et al (2009) Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up. J Am Coll Cardiol 53:483–490

    PubMed  Google Scholar 

  267. Verhaert D, Grimm RA, Puntawangkoon C, et al (2010) Long-term reverse remodeling with cardiac resynchronization therapy: results of extended echocardiographic follow-up. J Am Coll Cardiol 55:1788–1795

    PubMed  Google Scholar 

  268. Cabrera-Bueno F, Molina-Mora MJ, Alzueta J, et al (2009) Persistence of secondary mitral regurgitation and response to cardiac resynchronization therapy. Eur J Echocardiogr 11:131–137

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Tamburino, C., Ussia, G.P. (2012). Mitral Valve Diseases. In: Percutaneous Treatment of Left Side Cardiac Valves. Springer, Milano. https://doi.org/10.1007/978-88-470-2631-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2631-5_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2630-8

  • Online ISBN: 978-88-470-2631-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics