Advertisement

Mammography: Diagnosis of Asymmetries, Masses and Architectural Distortion

  • Christian Weismann

Abstract

For the correct interpretation of a mammogram perception and to detect early-stage breast cancer, the radiologist must learn how to assess and categorize image findings. Based on the finding, a clear recommendation is given according to the final assessment category. Mammography sensitivity is influenced by individual patientdependent parameters (breast density, tumor growth pattern), mammogram acquisition (technician), technical quality of the image, and reader experience.

Keywords

Breast Density Architectural Distortion Double Reading Extensive Intraductal Component Invasive Lobular Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kundel HL, Nodine CF, Conant EF, Weinstein SP (2007) Holistic component of image perception in mammogram interpretation. Radiology 242:396–402PubMedCrossRefGoogle Scholar
  2. 2.
    American College of Radiology (2003A) Breast imaging reporting and data system (BI-RADS), 4th ed. American College of Radiology, RestonGoogle Scholar
  3. 3.
    Ooms EA, Zonderland HM, Eijkemans MJC et al (2007) Mammography: interobserver variability in breast density assessment. Breast 16:568–576PubMedCrossRefGoogle Scholar
  4. 4.
    Schulz-Wendtland R, Wenkel E, Wacker T, Hermann KP (2009) Quo Vadis? Trends in der digitalen Mammografie [Quo Vadis? Trends in digital mammography]. Geburtsh Frauenheilk 69:108–117CrossRefGoogle Scholar
  5. 5.
    Funovics M, Schamp S, Helbich TH et al (2001) Evaluation eines computerassistierten Diagnosesystems in der Erkennung des Mammakarzinoms [Evaluation of a computer assisted diagnosis system to detect breast cancer]. Fortschr Röntgenstr 173:218–223CrossRefGoogle Scholar
  6. 6.
    Malich A, Marx C, Facius M et al (2001) Tumour detection rate of a new commercially available computer-aided detection system. Eur J Radiol 11:2454–2459CrossRefGoogle Scholar
  7. 7.
    Gilbert FL, Astley SM, McGee MA et al (2006) Single reading with computer aided detection and double reading of screening mammograms in the United Kingdom national breast screening program. Radiology 241:47–53PubMedCrossRefGoogle Scholar
  8. 8.
    Lazarus E, Mainiero MB, Schepps B et al (2006) BI-RADS Lexicon for US and mammography: Interobserver variability and positive predictive value. Radiology 239:385–391PubMedCrossRefGoogle Scholar
  9. 9.
    Healey EA, Osteen RT, Schnitt SJ et al (1989) Can the clinical and mammographic findings at presentation predict the presence of an extensive intraductal component in early stage breast cancer? Int J Radiat Oncol Biol Phys 17:1217–1221PubMedCrossRefGoogle Scholar
  10. 10.
    Holland R, Connolly JL, Gelman R et al (1990) The presence of an extensive intraductal component following a limited excision correlates with prominent residual disease in the remainder of the breast. J Clin Oncol 8:1:113–118PubMedGoogle Scholar
  11. 11.
    Müller-Schimpfle MP, Heindel W, Kettritz U et al (2010) Konsensustreffen der Kursleiter in der Mammadiagnostik am 9.5.2009 in Frankfurt am Main — Thema: Herdbefunde [Consensus meeting of Course Directors in Breast Imaging, 9 May 2009 in Frankfurt am Main — topic: masses) Fortschr Röntgenstr 182:671–675CrossRefGoogle Scholar
  12. 12.
    Harvey JA, Nicholson BT, Cohen MA (2008) Finding early invasive breast cancers. Radiology 248:61–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Christian Weismann
    • 1
  1. 1.Diagnostic & Interventional Breast Department, Private University Institute of Radiology, PMUGeneral Hospital SalzburgSalzburgAustria

Personalised recommendations