Skip to main content

Radioiodine Therapy: Current Imaging Concepts Introduction

  • Conference paper
Diseases of the Brain, Head & Neck, Spine 2012–2015
  • 1927 Accesses

Abstract

The ability of thyroid and differentiated thyroid carcinoma (DTC) cells to trap and to handle iodine forms the basis of radioiodine (131I) diagnostic scanning and treatment of patients affected by primary hyperthyroidism and differentiated thyroid carcinoma, respectively. Iodine is transported and trapped within the follicular thyroid cells by the sodium iodide symporter (NIS). The NIS is a 643- amino-acid protein located in the laterobasal compartment of follicular cells closed to the capillaries. Iodine trapping is achieved by an energy-dependent mechanism that, in physiologic conditions, depends mainly on thyrotropin [thyroid-stimulating hormone (TSH)] [1]. Iodine is then passively transported by the pendrin, a chlorideiodine transport protein, into the colloid across the apical membrane. Then, iodide oxidation into iodine and iodine organification into tyrosyl residues of the thyroglobulin (Tg) occur at the luminal surface of the thyrocyte apical membrane (Fig. 1) [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodine transporter. Nature 379:458–460

    Article  PubMed  CAS  Google Scholar 

  2. Taurog A (2000) Hormone synthesis: thyroid iodine metabolism. In: Braverman LE, Utiger RD (eds) The thyroid. A fundamental and clinical text. Lippincott Williams & Wilkins, Philadelphia, pp 61–85

    Google Scholar 

  3. Marinelli LD, Quimbly EH, Hine GJ (1948) Dosage determination with radioactive isotopes. Practical considerations in therapy and protection. AJR Am J Roengtenol 59:260–281

    CAS  Google Scholar 

  4. Dietlein M, Dressler J, Joseph K et al (1999) Guideline for radioiodine therapy (RIT) in benign thyroid diseases. Nuklearmedizin 38:219–220

    PubMed  CAS  Google Scholar 

  5. Giovanella L, Suriano S, Maffioli M et al (2010) (99m)Tc-sestaMIBI scanning in thyroid nodules with nondiagnostic cytology. Head Neck 32:607–611

    PubMed  Google Scholar 

  6. Cooper DS, Doherty GM, Haugen BR et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214

    Article  PubMed  Google Scholar 

  7. Luster M, Clarke SE, Dietlein M et al (2008) Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 35:1941–1959

    Article  PubMed  CAS  Google Scholar 

  8. Giovanella L, Suriano R, Ricci R et al (2011) Postsurgical thyroid remnant estimation by (99m)Tc-pertechnetate scintigraphy predicts radioiodine ablation effectiveness in patients with differentiated thyroid carcinoma. Head Neck 33:552–556

    Article  PubMed  Google Scholar 

  9. Giovanella L, Suriano R, Castellani M et al (2011) Thyroid remnant estimation by Tc99m-sestaMIBI scanning predicts the effectiveness of rhTSH-stimulated I-131 ablation in patients with differentiated thyroid carcinoma. Clin Nucl Med 36:781–785

    Article  PubMed  Google Scholar 

  10. Wong KK, Sisson JC, Koral KF et al (2010) Staging of differentiated thyroid carcinoma using diagnostic 131I SPECT/CT. AJR Am J Roentgenol 195:730–736

    Article  PubMed  Google Scholar 

  11. Capoccetti F, Criscuoli B, Rossi G et al (2009) The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging 53:536–545

    PubMed  CAS  Google Scholar 

  12. Freudenberg LS, Antoch G, Frilling A et al (2008) Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET. Eur J Nucl Med Mol Imaging 35:950–957

    Article  PubMed  CAS  Google Scholar 

  13. Briele B, Hotze AL, Kropp J et al (1991) A comparison of 201Tl and 99mTc-MIBI in the follow-up of differentiated thyroid carcinoma. Nuklearmedizin 30:115–124

    PubMed  CAS  Google Scholar 

  14. Gorges R, Kahaly G, Muller-Brandt J et al (2001) Radionuclide-labeled somatostatin analogues for diagnostic and therapeutic purposes in non-medullary thyroid cancer. Thyroid 11:647–659

    Article  PubMed  CAS  Google Scholar 

  15. Blaser D, Maschauer S, Kuwert T et al (2006) In vitro studies on the signal transduction of thyroidal uptake of 18F-FDG and 131I-iodide. J Nucl Med 47:1382–1388

    PubMed  Google Scholar 

  16. Conti PS, Durski JM, Bacqai F et al (1999) Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid 9:797–804

    Article  PubMed  CAS  Google Scholar 

  17. Wang W, Macapinlac H, Larson SM et al (1999) [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 84:2291–302

    Article  PubMed  CAS  Google Scholar 

  18. Ma C, Xie J, Lou Y et al (2010) The role of TSH for 18F-FDGPET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated thyroglobulin and negative scan: a meta-analysis. Eur J Endocrinol 163:177–183

    Article  PubMed  CAS  Google Scholar 

  19. Robbins RJ, Wan Q, Grewal RK et al (2006) Real-time prognosis for metastatic thyroid carcinoma based on FDG-PET scanning. J Clin Endocrinol Metab 91:498–505

    Article  PubMed  CAS  Google Scholar 

  20. Iagaru A, Kalinyak, Mc Dougall IR (2007) F-18 FDG PET/CT in the management of thyroid cancer. Clin Nucl Med 32:690–695

    Article  PubMed  Google Scholar 

  21. Giovanella L, Ceriani L, De Palma D et al (2011) Relationship between serum thyroglobulin and 18FDG PET/CT in 131I-negative differentiated thyroid carcinomas. Head Neck doi: 10.1002/hed.21791

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this paper

Cite this paper

Giovanella, L. (2012). Radioiodine Therapy: Current Imaging Concepts Introduction. In: Hodler, J., von Schulthess, G.K., Zollikofer, C.L. (eds) Diseases of the Brain, Head & Neck, Spine 2012–2015. Springer, Milano. https://doi.org/10.1007/978-88-470-2628-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2628-5_31

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2627-8

  • Online ISBN: 978-88-470-2628-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics