Phase Transitions in Cancer

Part of the SIMAI Springer Series book series (SEMA SIMAI)

Abstract

Cancer dynamics is sometimes associated to well-defined transitions between qualitative properties of neoplasms, or even to the shift from presence to regression. Cancer is largely understood as a Darwinian evolution experiment within organisms, characterized by a break of cooperation between cells. Some patterns of sudden change have been identified as phase transitions, similar to those known from the physics of phase changes. Two of them are analyzed here: (a) the shift from cancer to cancer-free tissues under the interaction with the immune system, and (b) the predicted existence of a threshold of instability associated to unstable tumorigenesis. The nature, evidence and implications of these transitions are discussed.

Keywords

Steam Coherence 

References

  1. 1.
    Adam, J.A., Bellomo, N.: A survey of models for tumor-immune system dynamics. Birkhauser, Boston (1996)MATHGoogle Scholar
  2. 2.
    Cahill, D.P., Kinzler, K.W., Vogelstein, B., Lengauer C.: Genetic instability and darwinian selection in tumors. Trends Genet. 15, M57-M61 (1999)CrossRefGoogle Scholar
  3. 3.
    Cole, W.H.: Spontaneous regression of cancer and the importance of finding its cause. Natl. Cancer Inst. Monogr. 44, 5–9 (1976)Google Scholar
  4. 4.
    Cui, Z., Willingham, M.C., Hicks, A.M., Alexander-Miller, M.A., Howard, T.D., Hawkins, G.A., Miller, M.S., Weir, H.M., Du, W., DeLong, C.J.: Spontaneous regression of advanced cancer: Identification of a unique genetically determined, age-dependent trait in mice. Proc. Natl. Acad. Sci. USA 100, 6682–6687 (2003)CrossRefGoogle Scholar
  5. 5.
    Deisboeck, T.S., Couzin, I.D.: Collective behavior in cancer cell populations. Bioessays 31, 190-197(2009)CrossRefGoogle Scholar
  6. 6.
    Domingo, E., Holland, J.J.: Mutation rates and rapid evolution of RNA viruses. In: Morse, S. (ed.) The evolutionary biology of RNA viruses, pp. 161–183, Raven Press, New York (1994)Google Scholar
  7. 7.
    Eigen, M.: Self-organization of matter and the evolution of biological macromolecules. Naturwiss. 58, 465-523(1971)CrossRefGoogle Scholar
  8. 8.
    Eigen, M., McCaskill, Schuster, P.: (1987) The molecular quasispecies. Adv. Chem. Phys. 75, 149-263(1987)Google Scholar
  9. 9.
    Fox, J.F., Loeb, L.A.: Lethal mutagenesis: targeting the mutator phenotype in cancer. Seminars Cancer Biol. 20, 353–359 (2010)CrossRefGoogle Scholar
  10. 10.
    Garay, R.P., Lefever, R.: A kinetic approach to the immunology of cancer: stationary state properties of effector-target cell reactions. J. Theor. Biol. 73, 417–438 (1978)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gatenby, R.A.: Application of competition theory to tumour growth: implications for tumour biology and treatment. Europ. J. Cancer 32A, 722–726 (1996)CrossRefGoogle Scholar
  12. 12.
    Gatenby, R.A., Frieden, B.R.: Application of information theory and extreme physical information to carcinogenesis. Cancer Res. 62, 3675–3684 (2002)Google Scholar
  13. 13.
    Greaves, M., Maley, C.C.: Clonal evolution in cancer. Nature 481, 306–313 (2012)CrossRefGoogle Scholar
  14. 14.
    Lengauer, C., Kinzler, K.W., Vogelstein, B.: Genetic instabilities in human cancers. Nature 396, 643–649 (1998)CrossRefGoogle Scholar
  15. 15.
    Loeb, L.A.: Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075-3079(1991)Google Scholar
  16. 16.
    Loeb, L.A., Essigmann, J.M., Kazazi, F., Zhang, J., Rose, K.D., Mullins, J.I.: Lethal mutage- nesis of HIV with mutagenic nucleoside analogs. Proc. Natl. Acad. Sci. USA 96, 1492–1497 (1999)CrossRefGoogle Scholar
  17. 17.
    Mallet, D.G., de Pillis, L.G.: A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 239, 334–350 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Merlo, L.M.F., Pepper, J.W., Reid, B.J., Maley, C.C.: Canceras an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006)CrossRefGoogle Scholar
  19. 19.
    Nowell, P.C. : The clonal evolution of tumor cell populations. Science 194, 23–32 (1976)CrossRefGoogle Scholar
  20. 20.
    Rosenberg, S.A.: Progress in human tumor immunology and immunotherapy. Nature 411, 380-384(2001)CrossRefGoogle Scholar
  21. 21.
    Schuster, P.: How do RNA molecules and viruses explore their worlds? In: Cowan, G.A., Pines, D., Meltzer, D. (eds.) Complexity: metaphors, models and reality, pp. 383–418. Addison- Wesley, Reading, MA (1994)Google Scholar
  22. 22.
    Solé, R.V.: Phase transitions in unstable cancer cell populations. Eur. Phys. J. B 35, 117–124 (2003)CrossRefGoogle Scholar
  23. 23.
    Solé, R.V.: Phase transitions. Princeton University Press, Princeton (2011)MATHGoogle Scholar
  24. 24.
    Solé, R.V., Deisboeck, T.S.: An error catastrophe in cancer? J. Theor. Biol. 228, 47–54 (2004)CrossRefGoogle Scholar
  25. 25.
    Solé, R.V., Goodwin B.: Signs of Life: How complexity pervades biology. Basic Books, New York (2001)Google Scholar
  26. 26.
    Solé, R.V., Rodriguez-Caso, C., Deisboeck, T.S., Saldanya, J.: Cancer stem cells as the engine of unstable tumor progression. Journal of Theoretical Biology 253, 629–637 (2008)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Spencer, S., Gerety, R., Pienta, K., Forrest, S.: Modeling somatic evolution in tumorigenesis. PLoS Comput. Biol. 2, e108 (2006)CrossRefGoogle Scholar
  28. 28.
    Weaver, B.A.A., Silk, A.D., Montagna, C., Verdier-Pinard, P., Cleveland, D.W.: Aneuploidy acts both oncogenically and as a tumor supressor. Cancer cell 11, 25–36 (2007)CrossRefGoogle Scholar
  29. 29.
    Weinberg, R.A.: The Biology of Cancer. Garland, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.ICREA-Complex Systems LabUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Institut de Biologia EvolutivaCSIC-UPF08003BarcelonaSpain
  3. 3.Santa Fe InstituteSanta FeUSA

Personalised recommendations