Skip to main content

Computational Models as Novel Tools for Cancer Vaccines

  • Chapter
  • 1138 Accesses

Part of the SIMAI Springer Series book series (SEMA SIMAI)

Abstract

Prevention of tumor growth by immunological approaches is based on the assumption that the immune system, if adequately stimulated before tumor onset, could be able to protect from specific cancers. In the last decade active immunization strategies effectively prevented some virus-related cancers in humans. An immunopreventive cell vaccine for the non-virus-related human breast cancer has been recently developed. This vaccine, called Triplex, targets the HER-2-neu oncogene in HER-2/neu transgenic mice and has shown to almost completely prevent HER-2/neu-driven mammary carcinogenesis when administered with an intensive and life-long schedule. To better understand the preventive efficacy of the Triplex vaccine in reduced schedules we employed a computational approach. The computer model developed allowed us to test specific vaccination schedules in the quest for optimality. Furthermore, another computational model was developed to simulate the scenario arising from the immunotherapy experiments with the Triplex vaccine as a therapeutic approach against lung metastases derived by mammary carcinoma. This chapter describes the trail we followed starting from the problem of evaluating immunopreventive schedules with a generic computer model for the immune system response to a model of metastasis passing through an in-silico detailed model of the cancer-immune system interaction in HER-2/neu transgenic mice. Altogether it provides an example of the successful use of a combination of animal and computational modeling to speed up the way from lab to the bedside and even the patient.

Keywords

  • Major Histocompatibility Complex
  • Mammary Carcinoma
  • Cancer Vaccine
  • Vaccination Schedule
  • Vaccine Administration

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nessuna umana investigazione si può dimandare vera scienza, se essa non passa per le matematiche dimostrazioni.

Leonardo da Vinci,

Trattato della pittura, I,1

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbas, A.K., Lichtman, A.H., Pillai, S.: Cellular and Molecular Immunology, 6th edn. Elsevier, Philadelphia (2007)

    Google Scholar 

  2. Bernaschi, M., Castiglione, F.: Design and implementation of an immune system simulator. Comp. Biol. Med. 31(5), 303–331 (2001)

    CrossRef  Google Scholar 

  3. Boggio, K., Nicoletti, G., Di Carlo, E., Cavallo, F., Landuzzi, L., Melani, C., Giovarelli, M., Rossi, I., Nanni, P., De Giovanni, C., Bouchard, P., Wolf, S., Modesti, A., Musiani, P., Lollini, P.L., Colombo, M.P., Forni, G.: Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J. Exp. Med. 188, 589–596 (1998)

    CrossRef  Google Scholar 

  4. Brenner, S., Milstein, C.: Origin of antibody variation. Nature 211, 242–243 (1966)

    CrossRef  Google Scholar 

  5. Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Vanderbilt University, Nashville, TN (1959)

    CrossRef  Google Scholar 

  6. Castiglione, F.: Agent Based Modeling. Scholarpedia 1(10), 1562 (2006)

    Google Scholar 

  7. Castiglione, F.: Agent Based Modeling and Simulation, Introduction to. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, vol 1, pp. 197–200. Springer, New York (2009)

    CrossRef  Google Scholar 

  8. Castiglione, F., Duca, K.A., Jarrah, A., Laubenbacher, R., Luzuriaga, K., Hochberg, D., Thorley-Lawson, D.A.. Simulating Epstein Barr Virus Infection with C-ImmSim. Bioinfor- matics 23, 1371–1377 (2007)

    CrossRef  Google Scholar 

  9. Castiglione, F., Poccia, F., D’Offizi, G., Bernaschi, M.: Mutation, fitness, viral diversity, and predictive markers of disease progression in a computational model of HIV type 1 infection. AIDS Res. Hum. Retrovirus 20(12), 1314–1323 (2004)

    CrossRef  Google Scholar 

  10. Castiglione, F., Santoni, D., Rapin, N.: CTLs’ repertoire shaping in the thymus: a Montecarlo simulation. Autoimmunity 44(4), 1–10 (2011)

    CrossRef  Google Scholar 

  11. Cavallo, F., Calogero, R.A., Forni, G.: Are oncoantigens suitable targets for anti-tumour therapy? Nat. Rev. Cancer 7, 707–713 (2007)

    CrossRef  Google Scholar 

  12. Cavallo, F., De Giovanni, C., Nanni, P., Forni, G., Lollini, P-L.: The immune hallmarks of cancer. Cancer Immunol. Immunother. 60, 319–326 (2011)

    CrossRef  Google Scholar 

  13. De Giovanni, C., Nicoletti, G., Landuzzi, L., Astolfi, A., Croci, S., Comes, A., Ferrini, S., Meazza, R., Iezzi, M., Di Carlo, E., Musiani, P., Cavallo, F., Nanni, P., Lollini, P.L.: Immunoprevention of HER-2/neu transgenic mammary carcinoma through an interleukin 12- engineered allogeneic cell vaccine. Cancer Res. 64, 4001–4009 (2004)

    CrossRef  Google Scholar 

  14. Devroye, L., Non-uniform random variate generation. Springer-Verlag, New York (1986)

    CrossRef  MATH  Google Scholar 

  15. Dunn, G.P., Old, L.J., Schreiber, R.D.: The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004)

    CrossRef  Google Scholar 

  16. Finn, O.J.: Cancer immunology. N. Engl. J. Med. 358, 2704–2715 (2008)

    CrossRef  Google Scholar 

  17. Francis, K., Palsson, B.O.: Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. Proc. Natl. Acad. Sci. USA 94(23), 12258–12262(1997)

    Google Scholar 

  18. Hayflick, L., Moorhead, P.S.: The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585–621 (1961)

    CrossRef  Google Scholar 

  19. Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol. 125C, 373–389 (1974)

    Google Scholar 

  20. Lederberg, J.: Genes and antibodies. Science 129, 1649–1653 (1959)

    Google Scholar 

  21. Lollini, P.L., Cavallo, F., Nanni, P., Forni, G.: Vaccines for tumor prevention. Nat. Rev. Cancer 6, 204–216 (2006)

    CrossRef  Google Scholar 

  22. Lollini, P.L., Motta, S., Pappalardo, F.: Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinformatics 7, 352 (2006)

    CrossRef  Google Scholar 

  23. Lollini, P.L., Motta, S., Pappalardo, F.: Modeling tumor immunology, Mathematical Models & Methods in Applied Sciences 16(7S), 1091–1124 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Lollini, P.L., Nicoletti, G., Landuzzi, L., Cavallo, F., Forni, G., De Giovanni, C., Nanni, P.: Vaccines and other immunological approaches for cancer immunoprevention. Curr. Drug. Targets 12, 1957–1973 (2010)

    CrossRef  Google Scholar 

  25. Matzinger, P.: Tolerance, Danger, and the Extended Family. Ann. Rev. Immunol. 12, 991–1045(1994)

    CrossRef  Google Scholar 

  26. Murphy, K., Travers, P., Janeway, C., Walport, M.: Janeway’s Immunology. Garland Science, Taylor and Francis, New York (2008)

    Google Scholar 

  27. Nanni, P., Landuzzi, L., Nicoletti, G., De Giovanni, C., Rossi, I., Croci, S., Astolfi, A., Iezzi, M., Di Carlo, E., Musiani, P., Forni, G., Lollini, P.L.: Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent. J. Immunol. 173, 22882296 (2004)

    CrossRef  Google Scholar 

  28. Nanni, P., Nicoletti, G., De Giovanni, C., Landuzzi, L., Di Carlo, E., Cavallo, F., Pupa, S.M., Rossi, I., Colombo, M.P., Ricci, C., Astolfi, A., Musiani, P., Forni, G., Lollini, P.L.: Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogen- esis in HER-2/neu transgenic mice. J. Exp. Med. 194, 1195–1205 (2001)

    CrossRef  Google Scholar 

  29. Nanni, P., Nicoletti, G., Palladini, A., Croci, S., Murgo, A., Antognoli, A., Landuzzi, L., Fabbi, M., Ferrini, S., Musiani, P., Iezzi, M., De Giovanni, C., Lollini, P.L.: Antimetastatic activity of a preventive cancer vaccine. Cancer Res. 67, 11037–11044 (2007)

    CrossRef  Google Scholar 

  30. Novellino, L., Castelli, C., Parmiani, G.: A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother. 54, 187–207 (2005)

    CrossRef  Google Scholar 

  31. Nossal, G.J.V., Pike Beverley, L.: Clonal anergy: Persistence in tolerant mice of antigen- binding B lymphocytes incapable of responding to antigen or mitogen. Proc. Natl. Acad. Sci. USA 77(3), 1602–1606 (1980)

    CrossRef  Google Scholar 

  32. Palladini, A., Nicoletti, G., Pappalardo, F., Murgo, A., Grosso, V., Stivani, V., Ianzano, M.L., Antognoli, A., Croci, S., Landuzzi, L., De Giovanni, C., Nanni, P., Motta, S., Lollini, P.L.: In silico modeling and in vivo efficacy of cancer-preventive vaccinations. Cancer Res. 70, 7755–7763(2010)

    CrossRef  Google Scholar 

  33. Pappalardo, F., Castiglione, F., Lollini, P.L., Motta, S.: Modelling and Simulation of Cancer Immunoprevention Vaccine. Bioinformatics 21(12), 2891–2897 (2005)

    CrossRef  Google Scholar 

  34. Pappalardo, F., Mastriani, E., Lollini, P.L., Motta, S.: Genetic Algorithm against Cancer. Lect. Notes Comp. Sci. 3849, 223–228 (2009)

    CrossRef  MATH  Google Scholar 

  35. Pappalardo, F., Pennisi, M., Castiglione, F., Motta, S.: Vaccine protocols optimization: in silico experiences. Biotechnology Advances 28, 82–93 (2010)

    CrossRef  Google Scholar 

  36. Pennisi, M., Catanuto, R., Mastriani, E., Cincotti, A., Pappalardo, F., Motta, S.: Simulated Annealing And Optimal Protocols. J. Circuits Systems and Computers 18(8), 1565–1579 (2009)

    CrossRef  Google Scholar 

  37. Pennisi, M., Catanuto, R., Pappalardo, F., Motta, S.: Optimal vaccination schedules using Simulated Annealing, Bioinformatics 24(15), 1740–1742 (2008)

    CrossRef  Google Scholar 

  38. Pennisi, M., Pappalardo, F., Motta, S.: Agent based modeling of lung metastasis-immune system competition. Lect. Notes Comp Sci 5666, 1–3 (2009)

    CrossRef  Google Scholar 

  39. Pennisi, M., Pappalardo, F., Palladini, A., Nicoletti, G., Nanni, P., Lollini, P.L., Motta, S.: Modeling the competition between lung metastases and the immune system using agents. BMC Bioinformatics 11(S7), S13 (2010)

    CrossRef  Google Scholar 

  40. Pennisi, M., Pappalardo, F., Zhang, P., Motta, S.: Searching of optimal vaccination schedules: application of genetic algorithms to approach the problem in cancer immunoprevention. IEEE Eng. Med. Biol. Magazine 28(4), 67–72 (2009)

    CrossRef  Google Scholar 

  41. Rapin, N., Lund, O., Bernaschi, M., Castiglione, F.: Computational immunology meets bioin- formatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 5(4), e9862 (2010)

    CrossRef  Google Scholar 

  42. Rosenberg, S.A., Yang, J.C., Restifo, N.P.: Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004)

    CrossRef  Google Scholar 

  43. Santoni, D., Pedicini, M., Castiglione, F.: Implementation of a regulatory gene network to simulate the TH1/2 differentiation in an agent-based model of hyper-sensitivity reactions. Bioinformatics 24(11), 1374–1380 (2008)

    CrossRef  Google Scholar 

  44. Schwartz, R.H.: T cell anergy. Ann. Rev. Immunol. 21, 305–334 (2003)

    CrossRef  Google Scholar 

  45. Segovia-Juarez, J.L., Ganguli, S., Kirschner, D.: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theo. Biol. 231(3), 357–376 (2004)

    Google Scholar 

  46. Slamon, D.J., Godolphin, W., Jones, L.A., Holt, J.A., Wong, S.G., Keith, D.E., Levin, W.J., Stuart, S.G., Udove, J., Ullrich, A.: Studies of the HER-2/neu protooncogene in human breast and ovarian cancer. Science 244, 707–712 (1989)

    CrossRef  Google Scholar 

  47. Ursini-Siegel, J., Schade, B., Cardiff, R.D., Muller, W.J.: Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat. Rev. Cancer 7, 389–397 (2007)

    CrossRef  Google Scholar 

  48. Wolfram, S.: ANew Kind of Science. Wolfram Media, Champain, Illinois, USA (2002)

    Google Scholar 

  49. Zhang, X., Mosser, D.M.: Macrophage activation by endogenous danger signals. J. Pathol. 214, 161–171 (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Castiglione, F., Lollini, P.L., Motta, S., Paladini, A., Pappalardo, F., Pennisi, M. (2012). Computational Models as Novel Tools for Cancer Vaccines. In: d’Onofrio, A., Cerrai, P., Gandolfi, A. (eds) New Challenges for Cancer Systems Biomedicine. SIMAI Springer Series. Springer, Milano. https://doi.org/10.1007/978-88-470-2571-4_12

Download citation