Abstract
Prevention of tumor growth by immunological approaches is based on the assumption that the immune system, if adequately stimulated before tumor onset, could be able to protect from specific cancers. In the last decade active immunization strategies effectively prevented some virus-related cancers in humans. An immunopreventive cell vaccine for the non-virus-related human breast cancer has been recently developed. This vaccine, called Triplex, targets the HER-2-neu oncogene in HER-2/neu transgenic mice and has shown to almost completely prevent HER-2/neu-driven mammary carcinogenesis when administered with an intensive and life-long schedule. To better understand the preventive efficacy of the Triplex vaccine in reduced schedules we employed a computational approach. The computer model developed allowed us to test specific vaccination schedules in the quest for optimality. Furthermore, another computational model was developed to simulate the scenario arising from the immunotherapy experiments with the Triplex vaccine as a therapeutic approach against lung metastases derived by mammary carcinoma. This chapter describes the trail we followed starting from the problem of evaluating immunopreventive schedules with a generic computer model for the immune system response to a model of metastasis passing through an in-silico detailed model of the cancer-immune system interaction in HER-2/neu transgenic mice. Altogether it provides an example of the successful use of a combination of animal and computational modeling to speed up the way from lab to the bedside and even the patient.
Keywords
- Major Histocompatibility Complex
- Mammary Carcinoma
- Cancer Vaccine
- Vaccination Schedule
- Vaccine Administration
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Nessuna umana investigazione si può dimandare vera scienza, se essa non passa per le matematiche dimostrazioni.
Leonardo da Vinci,
Trattato della pittura, I,1
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abbas, A.K., Lichtman, A.H., Pillai, S.: Cellular and Molecular Immunology, 6th edn. Elsevier, Philadelphia (2007)
Bernaschi, M., Castiglione, F.: Design and implementation of an immune system simulator. Comp. Biol. Med. 31(5), 303–331 (2001)
Boggio, K., Nicoletti, G., Di Carlo, E., Cavallo, F., Landuzzi, L., Melani, C., Giovarelli, M., Rossi, I., Nanni, P., De Giovanni, C., Bouchard, P., Wolf, S., Modesti, A., Musiani, P., Lollini, P.L., Colombo, M.P., Forni, G.: Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J. Exp. Med. 188, 589–596 (1998)
Brenner, S., Milstein, C.: Origin of antibody variation. Nature 211, 242–243 (1966)
Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Vanderbilt University, Nashville, TN (1959)
Castiglione, F.: Agent Based Modeling. Scholarpedia 1(10), 1562 (2006)
Castiglione, F.: Agent Based Modeling and Simulation, Introduction to. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, vol 1, pp. 197–200. Springer, New York (2009)
Castiglione, F., Duca, K.A., Jarrah, A., Laubenbacher, R., Luzuriaga, K., Hochberg, D., Thorley-Lawson, D.A.. Simulating Epstein Barr Virus Infection with C-ImmSim. Bioinfor- matics 23, 1371–1377 (2007)
Castiglione, F., Poccia, F., D’Offizi, G., Bernaschi, M.: Mutation, fitness, viral diversity, and predictive markers of disease progression in a computational model of HIV type 1 infection. AIDS Res. Hum. Retrovirus 20(12), 1314–1323 (2004)
Castiglione, F., Santoni, D., Rapin, N.: CTLs’ repertoire shaping in the thymus: a Montecarlo simulation. Autoimmunity 44(4), 1–10 (2011)
Cavallo, F., Calogero, R.A., Forni, G.: Are oncoantigens suitable targets for anti-tumour therapy? Nat. Rev. Cancer 7, 707–713 (2007)
Cavallo, F., De Giovanni, C., Nanni, P., Forni, G., Lollini, P-L.: The immune hallmarks of cancer. Cancer Immunol. Immunother. 60, 319–326 (2011)
De Giovanni, C., Nicoletti, G., Landuzzi, L., Astolfi, A., Croci, S., Comes, A., Ferrini, S., Meazza, R., Iezzi, M., Di Carlo, E., Musiani, P., Cavallo, F., Nanni, P., Lollini, P.L.: Immunoprevention of HER-2/neu transgenic mammary carcinoma through an interleukin 12- engineered allogeneic cell vaccine. Cancer Res. 64, 4001–4009 (2004)
Devroye, L., Non-uniform random variate generation. Springer-Verlag, New York (1986)
Dunn, G.P., Old, L.J., Schreiber, R.D.: The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004)
Finn, O.J.: Cancer immunology. N. Engl. J. Med. 358, 2704–2715 (2008)
Francis, K., Palsson, B.O.: Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. Proc. Natl. Acad. Sci. USA 94(23), 12258–12262(1997)
Hayflick, L., Moorhead, P.S.: The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585–621 (1961)
Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol. 125C, 373–389 (1974)
Lederberg, J.: Genes and antibodies. Science 129, 1649–1653 (1959)
Lollini, P.L., Cavallo, F., Nanni, P., Forni, G.: Vaccines for tumor prevention. Nat. Rev. Cancer 6, 204–216 (2006)
Lollini, P.L., Motta, S., Pappalardo, F.: Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinformatics 7, 352 (2006)
Lollini, P.L., Motta, S., Pappalardo, F.: Modeling tumor immunology, Mathematical Models & Methods in Applied Sciences 16(7S), 1091–1124 (2006)
Lollini, P.L., Nicoletti, G., Landuzzi, L., Cavallo, F., Forni, G., De Giovanni, C., Nanni, P.: Vaccines and other immunological approaches for cancer immunoprevention. Curr. Drug. Targets 12, 1957–1973 (2010)
Matzinger, P.: Tolerance, Danger, and the Extended Family. Ann. Rev. Immunol. 12, 991–1045(1994)
Murphy, K., Travers, P., Janeway, C., Walport, M.: Janeway’s Immunology. Garland Science, Taylor and Francis, New York (2008)
Nanni, P., Landuzzi, L., Nicoletti, G., De Giovanni, C., Rossi, I., Croci, S., Astolfi, A., Iezzi, M., Di Carlo, E., Musiani, P., Forni, G., Lollini, P.L.: Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent. J. Immunol. 173, 2288–2296 (2004)
Nanni, P., Nicoletti, G., De Giovanni, C., Landuzzi, L., Di Carlo, E., Cavallo, F., Pupa, S.M., Rossi, I., Colombo, M.P., Ricci, C., Astolfi, A., Musiani, P., Forni, G., Lollini, P.L.: Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogen- esis in HER-2/neu transgenic mice. J. Exp. Med. 194, 1195–1205 (2001)
Nanni, P., Nicoletti, G., Palladini, A., Croci, S., Murgo, A., Antognoli, A., Landuzzi, L., Fabbi, M., Ferrini, S., Musiani, P., Iezzi, M., De Giovanni, C., Lollini, P.L.: Antimetastatic activity of a preventive cancer vaccine. Cancer Res. 67, 11037–11044 (2007)
Novellino, L., Castelli, C., Parmiani, G.: A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother. 54, 187–207 (2005)
Nossal, G.J.V., Pike Beverley, L.: Clonal anergy: Persistence in tolerant mice of antigen- binding B lymphocytes incapable of responding to antigen or mitogen. Proc. Natl. Acad. Sci. USA 77(3), 1602–1606 (1980)
Palladini, A., Nicoletti, G., Pappalardo, F., Murgo, A., Grosso, V., Stivani, V., Ianzano, M.L., Antognoli, A., Croci, S., Landuzzi, L., De Giovanni, C., Nanni, P., Motta, S., Lollini, P.L.: In silico modeling and in vivo efficacy of cancer-preventive vaccinations. Cancer Res. 70, 7755–7763(2010)
Pappalardo, F., Castiglione, F., Lollini, P.L., Motta, S.: Modelling and Simulation of Cancer Immunoprevention Vaccine. Bioinformatics 21(12), 2891–2897 (2005)
Pappalardo, F., Mastriani, E., Lollini, P.L., Motta, S.: Genetic Algorithm against Cancer. Lect. Notes Comp. Sci. 3849, 223–228 (2009)
Pappalardo, F., Pennisi, M., Castiglione, F., Motta, S.: Vaccine protocols optimization: in silico experiences. Biotechnology Advances 28, 82–93 (2010)
Pennisi, M., Catanuto, R., Mastriani, E., Cincotti, A., Pappalardo, F., Motta, S.: Simulated Annealing And Optimal Protocols. J. Circuits Systems and Computers 18(8), 1565–1579 (2009)
Pennisi, M., Catanuto, R., Pappalardo, F., Motta, S.: Optimal vaccination schedules using Simulated Annealing, Bioinformatics 24(15), 1740–1742 (2008)
Pennisi, M., Pappalardo, F., Motta, S.: Agent based modeling of lung metastasis-immune system competition. Lect. Notes Comp Sci 5666, 1–3 (2009)
Pennisi, M., Pappalardo, F., Palladini, A., Nicoletti, G., Nanni, P., Lollini, P.L., Motta, S.: Modeling the competition between lung metastases and the immune system using agents. BMC Bioinformatics 11(S7), S13 (2010)
Pennisi, M., Pappalardo, F., Zhang, P., Motta, S.: Searching of optimal vaccination schedules: application of genetic algorithms to approach the problem in cancer immunoprevention. IEEE Eng. Med. Biol. Magazine 28(4), 67–72 (2009)
Rapin, N., Lund, O., Bernaschi, M., Castiglione, F.: Computational immunology meets bioin- formatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 5(4), e9862 (2010)
Rosenberg, S.A., Yang, J.C., Restifo, N.P.: Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004)
Santoni, D., Pedicini, M., Castiglione, F.: Implementation of a regulatory gene network to simulate the TH1/2 differentiation in an agent-based model of hyper-sensitivity reactions. Bioinformatics 24(11), 1374–1380 (2008)
Schwartz, R.H.: T cell anergy. Ann. Rev. Immunol. 21, 305–334 (2003)
Segovia-Juarez, J.L., Ganguli, S., Kirschner, D.: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theo. Biol. 231(3), 357–376 (2004)
Slamon, D.J., Godolphin, W., Jones, L.A., Holt, J.A., Wong, S.G., Keith, D.E., Levin, W.J., Stuart, S.G., Udove, J., Ullrich, A.: Studies of the HER-2/neu protooncogene in human breast and ovarian cancer. Science 244, 707–712 (1989)
Ursini-Siegel, J., Schade, B., Cardiff, R.D., Muller, W.J.: Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat. Rev. Cancer 7, 389–397 (2007)
Wolfram, S.: ANew Kind of Science. Wolfram Media, Champain, Illinois, USA (2002)
Zhang, X., Mosser, D.M.: Macrophage activation by endogenous danger signals. J. Pathol. 214, 161–171 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Italia
About this chapter
Cite this chapter
Castiglione, F., Lollini, P.L., Motta, S., Paladini, A., Pappalardo, F., Pennisi, M. (2012). Computational Models as Novel Tools for Cancer Vaccines. In: d’Onofrio, A., Cerrai, P., Gandolfi, A. (eds) New Challenges for Cancer Systems Biomedicine. SIMAI Springer Series. Springer, Milano. https://doi.org/10.1007/978-88-470-2571-4_12
Download citation
DOI: https://doi.org/10.1007/978-88-470-2571-4_12
Publisher Name: Springer, Milano
Print ISBN: 978-88-470-2570-7
Online ISBN: 978-88-470-2571-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)