Abstract
It is increasingly argued that solid tumors follow a cellular hierarchy comparable to normal tissues, with so-called cancer stem cells on top of the hierarchy. In this model, cancer stem cells have the unique capability to initiate and propagate solid tumors. Non-stem cancer cells will form the bulk of the tumor population, but are by themselves incapable of giving rise to a continuously growing tumor. The two distinct phenotypes interact with one another and compete for common resources such as oxygen, nutrients, or available space. Single cell kinetics are parameterized with in vitro data and the interplay between cancer stem cells and their non-stem cancer cell counterpart is studied using two different modeling approaches: a cellular automaton model and a cellular Potts model. Simulations of tumor growth with both techniques reveal that cancer stem cell-driven solid tumors grow as conglomerates of self-metastases, suggesting a robust biological phenomenon. The growth rate of the tumor is dependent on the complex interplay of the underlying model parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F.: Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988 (2003)
Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)
Almog, N., Ma, L., Raychowdhury, R., Schwager, C., Erber, R., Short, S., Hlatky, L., Vajkoczy, P., Huber, P.E., Folkman, J., Abdollahi, A.: Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res. 69, 836–844 (2009)
Anderson, A.R.A.: A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22, 163–186 (2005)
Basanta, D., Hatzikirou, H., Deutsch, A.: Studying the emergence of invasiveness in tumours using game theory. Eur. Phys. J. B 63, 393–397 (2008)
Cipra, B.: An introduction to the Ising model. Am. Math. Monthly 94, 937–959 (1987)
Dewri, R., Chakraborti, N.: (2005) Simulating recrystallization through cellular automata and genetic algorithms. Modelling Simul. Mater. Sci. Eng. 13, 173–183
Dingli, D., Michor, F.: Successful therapy must eradicate cancer stem cells. Stem Cells 24, 2603–2610 (2006)
Dionysiou, D.D., Stamatakos, G.S., Uzunoglu, N.K., Nikita, K.S., Marioli, A.: A fourdimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J. Theor. Biol. 230, 1–20 (2004)
Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J., Schreiber, R.D.: Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002)
Dunn, G.P., Old, L.J., Schreiber, R.D.: The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004)
Enderling, H., Alexander, N.R., Clark, E.S., Branch, K.M., Estrada, L., Crooke, C., Jourquin, J., Lobdell, N., Zaman, M.H., Guelcher, S.A., Anderson, A.R., Weaver, A.M.: Dependence of invadopodia function on collagen fiber spacing and cross-linking: computational modeling and experimental evidence. Biophys. J. 95, 2203–2218 (2008)
Enderling, H., Anderson, A.R., Chaplain, M.A., Beheshti, A., Hlatky, L., Hahnfeldt, P.: Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res. 69, 8814–8821 (2009)
Enderling, H., Hahnfeldt, P.: Cancer stem cells in solid tumors: Is evading apoptosis a hallmark of cancer? Prog. Biophys. Mol. Biol. 106, 391–399 (2011)
Enderling, H., Hahnfeldt, P., Hlatky, L., Almog, N.: Systems Biology of tumor dormancy: linking biology and mathematics on multiple scales to improve cancer therapy. Cancer Res. 71, 2172–2175 (2012)
Enderling, H., Hlatky, L., Hahnfeldt, P.: Migration rules: tumours are conglomerates of selfmetastases. Br. J. Cancer 100, 1917–1925 (2009)
Enderling, H., Hlatky, L., Hahnfeldt, P.: Tumor morphological evolution: directed migration and gain and loss of the self-metastatic phenotype. Biol. Direct 5, 23 (2010)
Enderling, H., Park, D., Hlatky, L., Hahnfeldt, P.: The importance of spatial distribution of stemness and proliferation state in determining tumor radioresponse. Math. Model. Nat. Phenom. 4, 117–133 (2009)
Folkman, J.: Tumor angiogenesis: therapeutic implications. New Engl. J. Med. 285, 1182–1186 (1971)
Ganguly, R., Puri, I.K.: Mathematical model for the cancer stem cell hypothesis. Cell Prolif. 39, 3–14 (2006)
Gerlee, P., Anderson, A.R.A.: An evolutionary hybrid cellular automaton model of solid tumour growth. J. Theor. Biol. 246, 583–603 (2007)
Glazier, J., Balter, A.:Magnetization to morphogenesis: A brief history of the Glazier-Graner-Hogeweg model. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (eds) Single-Cell-Based Models in Biology and Medicine. Birkhauser, Basel (2007)
Graner, F., Glazier, J.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992)
Hahnfeldt, P., Panigrahy D, Folkman J, Hlatky L.: Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)
Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)
Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)
Hatzikirou, H., Basanta, D., Simon, M., Schaller, K., Deutsch, A.: “Go or Grow”: the key to the emergence of invasion in tumour progression? Math. Med. Biol. 29, 49–65 (2010)
Hegedüs, B., Czirók, A., Fazekas, I., B’abel, T., Madar’asz, E., Vicsek, T.: Locomotion and proliferation of glioblastoma cells in vitro: statistical evaluation of videomicroscopic observations. J. Neurosurg. 92, 428–434 (2000)
Hermann, P.C., Bhaskar, S., Cioffi, M.,Heeschen, C.: Cancer stem cells in solid tumors. Semin. Cancer Biol. 20, 77–84 (2010)
Leder, K., Holland, E.C., Michor, F.: The therapeutic implications of plasticity of the cancer stem cell phenotype. PLoS ONE 5, e14366 (2010)
Marciniak-Czochra, A., Stiehl, T., Ho, A.D., Jaeger,W., Wagner, W.:Modeling of asymmetric cell division in hematopoietic stem cells–regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18 377–385 (2009)
Marian, C.O., Wright, W.E., Shay, J.W.: The effects of telomerase inhibition on prostate tumor-initiating cells. Int. J. Cancer 127, 321–331 (2010)
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953) 204
Morton, C.I., Hlatky, L., Hahnfeldt, P., Enderling, H.: Non-stem cancer cell kinetics modulate solid tumor progression. Theor. Biol. Med. Model. 8, 48 (2011)
Mukhopadhyay, R., Costes, S.V., Bazarov, A.V., Hines,W.C., Barcellos-Hoff, M.H., Yaswen, P.: Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: an agent-based model supported by in vitro studies. Breast Cancer Res. 12, R11 (2010)
Nakada, M., Anderson, E.M., Demuth, T., Nakada, S., Reavie, L.B., Drake, K.L., Hoelzinger, D.B., Berens, M.E.: The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int. J. Cancer 126 1155–1165 (2010)
Norton, L.: Conceptual and practical implications of breast tissue geometry: toward a more effective, less toxic therapy. The Oncologist 10, 370–381 (2005)
Norton, L.: Cancer stem cells, self-seeding, and decremented exponential growth: theoretical and clinical implications. Breast Dis. 29, 27–36 (2008)
Piotrowska, M.J., Angus, S.D.: A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth. J. Theor. Biol. 258, 165–178 (2009)
Prehn, R.T.: Immunomodulation of tumor growth. Am. J. Pathol. 77, 119–122 (1974)
Prehn, R.T.: The inhibition of tumor growth by tumor mass. Cancer Res. 51, 2–4 (1991)
Rejniak, K.A., Anderson, A.R.A.: A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure. Bull. Math. Biol. 70, 677–712 (2008)
Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L.: Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)
Rich, J.N.: Cancer stem cells in radiation resistance. Cancer Res. 67, 8980–8984 (2007)
Sabari, J., Lax, D., Connors, D., Brotman, I., Mindrebo, E., Butler, C., Entersz, I., Jia, D., Foty, R.A.: Fibronectin matrix assembly suppresses dispersal of glioblastoma cells. PLoS ONE 6, e24810 (2011)
Shay, J.W., Wright, W.E.: Telomeres and telomerase in normal and cancer stem cells. FEBS Lett. 584, 3819–3825 (2010)
Solé, R.V., Rodriguez-Caso, C., Deisboeck, T.S., Saldaña, J.: Cancer stem cells as the engine of unstable tumor progression. J. Theor. Biol. 253, 629–637 (2008)
Tang, J., Enderling, H., Becker-Weimann, S., Pham, C., Polyzos, A., Chen, C.Y., Costes, S.V.: Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling. Integr. Biol. (Camb) 3, 408–421 (2011)
Vermeulen, P.B., van Laere, S.J., Dirix, L.Y.: Inflammatory breast carcinoma as a model of accelerated self-metastatic expansion by intravascular growth. Br. J. Cancer 101, 1028–1029, author reply 1030 (2009)
Visvader, J.E., Lindeman, G.J.: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008)
Wang, Z., Zhang, L., Sagotsky, J., Deisboeck, T.S.: Simulating non-small cell lung cancer with a multiscale agent-based model. Theor. Biol. Med. Model. 4, 50 (2007)
Wicha, M.S., Liu, S., Dontu, G.: Cancer stem cells: an old idea–a paradigm shift. Cancer Res. 66, 1883–1890,discussion 1895–1896 (2006)
Acknowledgements
The authors wish to thank Alberto d’Onofrio, Paola Cerrai, and Alberto Gandolfi for inviting us to contribute to this book, and Philip Hahnfeldt and James Glazier for their contribution to the original development of the different models that are summarized in this chapter. This project was supported by the National Cancer Institute under Award Number U54CA149233 to L.H. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Italia
About this chapter
Cite this chapter
Gao, X., McDonald, J.T., Hlatky, L., Enderling, H. (2012). Cell-Cell Interactions in Solid Tumors — the Role of Cancer Stem Cells. In: d’Onofrio, A., Cerrai, P., Gandolfi, A. (eds) New Challenges for Cancer Systems Biomedicine. SIMAI Springer Series. Springer, Milano. https://doi.org/10.1007/978-88-470-2571-4_10
Download citation
DOI: https://doi.org/10.1007/978-88-470-2571-4_10
Publisher Name: Springer, Milano
Print ISBN: 978-88-470-2570-7
Online ISBN: 978-88-470-2571-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)