Advertisement

Dirichlet-Type Problems for the Iterated Dirac Operator on the Unit Ball in Clifford Analysis

  • Min Ku
  • Uwe KählerEmail author
  • Paula Cerejeiras
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 1)

Abstract

We study a class of Dirichlet-type problems for null solutions to iterated Dirac operators on the unit ball of R n with boundary data given by function in Open image in new window (1<p<+∞). Applying Almansi-type decomposition theorems for null solutions to iterated Dirac operators, our Dirichlet-type problems for null solutions to iterated Dirac operators is transferred to Dirichlet-type problems for monogenic functions or harmonic functions. By introducing shifted Euler operators and making use of Clifford-Cauchy transform, we get its unique solution and its integral representation.

Notes

Acknowledgements

This work was supported by FEDER funds through COMPETE—Operational Programme Factors of Competitiveness (“Programa Operacional Factores de Competitividade”), by Portuguese funds through the Center for Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese Foundation for Science and Technology (“FCT—Fundação para a Ciência e a Tecnologia”), within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690 and by NNSF of China under Grant No. 60873249. The first author is the recipient of Postdoctoral Foundation from FCT (Portugal) under Grant No. SFRH/BPD/74581/2010 and from China under Grant No. 201003111.

References

  1. 1.
    Balk, M.B.: On Polyanalytic Functions. Akademie Verlag, Berlin (1991) Google Scholar
  2. 2.
    Begehr, H., Du, J., Wang, Y.: A Dirichlet problem for polyharmonic functions. Ann. Mat. Pura Appl. 187(4), 435–457 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Begehr, H., Du, Z., Wang, N.: Dirichlet problems for inhomogeneous complex mixed-partial differential equations of higher order in the unit disc: new view. Oper. Theory Adv. Appl. 205, 101–128 (2009) MathSciNetGoogle Scholar
  4. 4.
    Du, Z., Guo, G., Wang, N.: Decompositions of functions and Dirichlet problems in the unit disc. J. Math. Anal. Appl. 362(1), 1–16 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Begehr, H., Hile, G.N.: A hierarchy of integral operators. Rocky Mt. J. Math. 27, 669–706 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman, London (1982) zbMATHGoogle Scholar
  7. 7.
    Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor Valued Functions. Kluwer Academic, Dordrecht (1992) zbMATHCrossRefGoogle Scholar
  8. 8.
    Gilbert, J.E., Murray, M.A.M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge Studies in Advances Mathematics, vol. 26. Cambridge University Press, Cambridge (1991) zbMATHCrossRefGoogle Scholar
  9. 9.
    Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1997) zbMATHGoogle Scholar
  10. 10.
    Delanghe, R., Sommen, F., Xu, Z.: Half Dirichlet problems for powers of the Dirac operator in the unit ball of R m (m≥3). Bull. Belg. Math. Soc. Simon Stevin 42(3), 409–429 (1990) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Mitrea, M.: Half-Dirichlet problems for Dirac operators in Lipschitz domains. Adv. Appl. Clifford Algebras 11(1), 121–135 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Delanghe, R., Qian, T.: Half Dirichlet problems and decompositions of Poisson kernels. Adv. Appl. Clifford Algebras 17(3), 383–393 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gürlebeck, K., Kähler, U.: On a boundary value problem of the biharmonic equation. Math. Methods Appl. Sci. 20(4), 867–883 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cerejeiras, P., Kähler, U.: Elliptic boundary value problems of fluid dynamics over unbounded domains. Math. Methods Appl. Sci. 23, 81–101 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bernstein, S.: On the left linear Riemann problem in Clifford analysis. Bull. Belg. Math. Soc. Simon Stevin 3, 557–576 (1996) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Abreu Blaya, R., Bory Reyes, J.: On the Riemann Hilbert type problems in Clifford analysis. Adv. Appl. Clifford Algebras 11(1), 15–26 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gong, Y.F., Du, J.Y.: A kind of Riemann and Hilbert boundary value problem for left monogenic functions in R m (m≥2). Complex Var. 49(5), 303–318 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gürlebeck, K., Zhang, Z.Z.: Some Riemann boundary value problems in Clifford analysis. Math. Methods Appl. Sci. 33, 287–302 (2010) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ku, M., Kähler, U., Wang, D.S.: Riemann boundary value problems on the sphere in Clifford analysis. Adv. Appl. Clifford Algebras (2012). doi: 10.1007/s00006-011-0308-2 Google Scholar
  20. 20.
    Ku, M., Wang, D.S.: Half Dirichlet problem for matrix functions on the unit ball in Hermitian Clifford analysis. J. Math. Anal. Appl. 374, 442–457 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Ku, M., Kähler, U.: Riemann boundary value problems on half space in Clifford analysis. Math. Methods Appl. Sci. (2012). doi: 10.1002/mma.2557 Google Scholar
  22. 22.
    Ku, M., Kähler, U., Wang, D.S.: Half Dirichlet problem for Hölder continuous matrix functions in Hermitian Clifford analysis. Complex Var. Elliptic Equ. (2012). doi: 10.1080/17476933.2011.649738 Google Scholar
  23. 23.
    Ku, M.: Integral formula of isotonic functions over unbounded domain in Clifford analysis. Adv. Appl. Clifford Algebras 20(1), 57–70 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Ryan, J.: Complexified Clifford analysis. Complex Var. Theory Appl. 1(1), 119–149 (1982) zbMATHCrossRefGoogle Scholar
  25. 25.
    Ku, M., Du, J.Y., Wang, D.S.: On generalization of Martinelli-Bochner integral formula using Clifford analysis. Adv. Appl. Clifford Algebras 20(2), 351–366 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ku, M., Du, J.Y., Wang, D.S.: Some properties of holomorphic Cliffordian functions in complex Clifford analysis. Acta Math. Sci. 30B(3), 747–768 (2010) MathSciNetGoogle Scholar
  27. 27.
    Ku, M., Wang, D.S.: Solutions to the polynomial Dirac equations on unbounded domains in Clifford analysis. Math. Methods Appl. Sci. 34(4), 418–427 (2011) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ku, M., Wang, D.S., Dong, L.: Solutions to polynomials generalized Bers-Vekua equations in Clifford analysis. Complex Anal. Oper. Theory 6(2), 407–424 (2012) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ku, M., Du, J.Y.: On integral representation of spherical k-regular functions in Clifford analysis. Adv. Appl. Clifford Algebras 19(1), 83–100 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Malonek, H., Ren, G.: Almansi-type theorems in Clifford analysis. Math. Methods Appl. Sci. 25, 1541–1552 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Sheldon, A., Paul, B., Wade, R.: Harmonic Function Theory. Graduate Texts in Mathematics, vol. 137. Springer, New York (2001) zbMATHGoogle Scholar
  32. 32.
    Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Oxford Mathematical Monographs, Oxford Science Publications. Oxford University Press, New York (1983) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Center for Research and Development in Mathematics and Applications, Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations