Muscle Biopsy To Investigate Mitochondrial Turnover

  • Rocco BarazzoniEmail author


Skeletal muscle biopsy is a long-established diagnostic used primarily as a diagnostic tool for neuromuscular disorders characterized by reduced muscle function and strength. For anatomical and functional characteristics, leg muscles and especially the vastus lateralis have been most commonly investigated. Percutaneous needles, which overcame the more invasive open biopsies, were introduced more than 50 years ago, with the original instruments named after Bergstrom [1], in honor of his pioneering work in their development (Fig. 8.1). When adequate suction is applied and a sufficient amount of muscle tissue is recovered, muscle biopsy allows for multiple measurements as well as the assessment of different anatomical or physiological parameters. Fiber and cell isolation, incubation, or culture are also possible and enable additional ex vivo studies. Muscular dystrophies, mitochondrial myopathies, and conditions often characterized by impaired muscle strength and function were early and obvious targets for diagnostic and research applications of muscle biopsy. Needle biopsy has been further extensively applied in the study of exercise physiology and pathophysiology, with the goal of investigating the regulation of mitochondrial function and substrate oxidation. In recent years, studies in the fields of obesity and diabetes have also focused on muscle mitochondrial function, and muscle biopsies have become increasingly common in human metabolic assessments.


Caloric Restriction Muscle Biopsy Mitochondrial Biogenesis Human Skeletal Muscle Skeletal Muscle Biopsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616PubMedCrossRefGoogle Scholar
  2. 2.
    Saunders PU, Pyne DB, Telford RD, Hawley JA (2004) Factors affecting running economy in trained distance runners. Sports Med 34:465–485PubMedCrossRefGoogle Scholar
  3. 3.
    Tessari P, Inchiostro S, Biolo G, Vincenti E, Sabadin L (1991) Effects of acute systemic hyperinsulinemia on forearm muscle proteolysis in healthy man. J Clin Invest 88:27–33PubMedCrossRefGoogle Scholar
  4. 4.
    Nair KS, Ford GC, Ekberg K, Fernqvist-Forbes E, Wahren J (1995) Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients. J Clin Invest 95:2926–2937PubMedCrossRefGoogle Scholar
  5. 5.
    Stephens FB, Constantin-Teodosiu D, Greenhaff PL (2007) New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J Physiol 581:431–444PubMedCrossRefGoogle Scholar
  6. 6.
    Kim YI, Lee FN, Choi WS, Lee S, Youn JH (2006) Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. Diabetes 55:2311–2337PubMedCrossRefGoogle Scholar
  7. 7.
    Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277:E1–E10PubMedGoogle Scholar
  8. 8.
    Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116:1776–1783PubMedCrossRefGoogle Scholar
  9. 9.
    Cantó C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105PubMedCrossRefGoogle Scholar
  10. 10.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122PubMedCrossRefGoogle Scholar
  11. 11.
    Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Exercise Cell Metab 11:213–219CrossRefGoogle Scholar
  12. 12.
    Holloszy JO (2008) Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol 59 Suppl 7:5–18PubMedGoogle Scholar
  13. 13.
    Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57:2933–2942PubMedCrossRefGoogle Scholar
  14. 14.
    Wojtaszewski JF, MacDonald C, Nielsen JN (2003) Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284:E813–E822PubMedGoogle Scholar
  15. 15.
    Adhihetty PJ, Irrcher I, Joseph AM, Ljubicic V, Hood DA (2003) Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 88:99–107PubMedCrossRefGoogle Scholar
  16. 16.
    Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622PubMedCrossRefGoogle Scholar
  17. 17.
    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204PubMedCrossRefGoogle Scholar
  18. 18.
    Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101:6659–6663PubMedCrossRefGoogle Scholar
  19. 19.
    Barazzoni R, Zanetti M, Bosutti A, Biolo G, Vitali-Serdoz L, Stebel M, Guarnieri G (2005) Moderate caloric restriction, but not physiological hyperleptinemia per se, enhances mitochondrial oxidative capacity in rat liver and skeletal muscle—tissue-specific impact on tissue triglyceride content and AKT activation. Endocrinology 146:2098–2106PubMedCrossRefGoogle Scholar
  20. 20.
    Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317PubMedCrossRefGoogle Scholar
  21. 21.
    Zangarelli A, Chanseaume E, Morio B, Brugère C, Mosoni L, Rousset P, Giraudet C, Patrac V, Gachon P, Boirie Y, Walrand S (2006) Synergistic effects of caloric restriction with maintained protein intake on skeletal muscle performance in 21-month-old rats: a mitochondria-mediated pathway. FASEB J 20:2439–2450PubMedCrossRefGoogle Scholar
  22. 22.
    Harman D (1981) The aging process. Proc Natl Acad Sci 78:7124–7128PubMedCrossRefGoogle Scholar
  23. 23.
    Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126:987–1002PubMedCrossRefGoogle Scholar
  24. 24.
    Rachek LI, Musiyenko SI, LeDoux SP, Wilson GL (2007) Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in l6 rat skeletal muscle cells. Endocrinology 148:293–299PubMedCrossRefGoogle Scholar
  25. 25.
    Pimenta AS, Gaidhu MP, Habib S, So M, Fediuc S, Mirpourian M, Musheev M, Curi R, Ceddia RB (2008) Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells. J Cell Physiol 217:478–485PubMedCrossRefGoogle Scholar
  26. 26.
    Hirabara SM, Curi R, Maechler P (2010) Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol 222:187–194PubMedCrossRefGoogle Scholar
  27. 27.
    Yuzefovych L, Wilson G, Rachek L (2010) Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 299:E1096–E105PubMedCrossRefGoogle Scholar
  28. 28.
    Brandt JM, Djouadi F, Kelly DP (1998) Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 273:23786–23792PubMedCrossRefGoogle Scholar
  29. 29.
    Iossa S, Lionetti L, Mollica MP, Crescenzo R, Botta M, Barletta A, Liverini G (2003) Effect of high-fat feeding on metabolic efficiency and mitochondrial oxidative capacity in adult rats. Br J Nutr 90:953–960PubMedCrossRefGoogle Scholar
  30. 30.
    Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926–1933PubMedCrossRefGoogle Scholar
  31. 31.
    Turner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS, Cooney GJ (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56:2085–2092PubMedCrossRefGoogle Scholar
  32. 32.
    Garcia-Roves P, Huss JM, Han DH, Hancock CR, Iglesias-Gutierrez E, Chen M, Holloszy JO (2007) Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc Natl Acad Sci U S A 104:10709–10713PubMedCrossRefGoogle Scholar
  33. 33.
    Bigrigg JK, Heigenhauser GJ, Inglis JG, LeBlanc PJ, Peters SJ (2009) Carbohydrate refeeding after a high-fat diet rapidly reverses the adaptive increase in human skeletal muscle PDH kinase activity. Am J Physiol Regul Integr Comp Physiol 297:R885–R891PubMedCrossRefGoogle Scholar
  34. 34.
    Medikayala S, Piteo B, Zhao X, Edwards JG (2011) Chronically elevated glucose compromises myocardial mitochondrial DNA integrity by alteration of mitochondrial topoisomerase function. Am J Physiol Cell Physiol 300:C338–C348PubMedCrossRefGoogle Scholar
  35. 35.
    Aas V, Hessvik NP, Wettergreen M, Hvammen AW, Hallén S, Thoresen GH, Rustan AC (2011) Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes. Biochim Biophys Acta 1812:94–105PubMedGoogle Scholar
  36. 36.
    Liu HY, Cao SY, Hong T, Han J, Liu Z, Cao W (2009) Insulin is a stronger inducer of insulin resistance than hyperglycemia in mice with type 1 diabetes mellitus (T1DM). J Biol Chem 284:27090–27100PubMedCrossRefGoogle Scholar
  37. 37.
    Ragheb R, Shanab GM, Medhat AM, Seoudi DM, Adeli K, Fantus IG (2009) Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem Biophys Res Commun 389:211–216PubMedCrossRefGoogle Scholar
  38. 38.
    Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, Vidal H, Rieusset J (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of dietinduced insulin-resistant mice. J Clin Invest 118:789–800PubMedGoogle Scholar
  39. 39.
    Anderson EJ, Lustig ME, Boyle KE, (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581PubMedCrossRefGoogle Scholar
  40. 40.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790PubMedCrossRefGoogle Scholar
  41. 41.
    Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801PubMedCrossRefGoogle Scholar
  42. 42.
    Supinski GS, Callahan LA (2007) Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. J Appl Physiol 102:2056–2063PubMedCrossRefGoogle Scholar
  43. 43.
    Wei Y, Sowers JR, Clark SE, Li W, Ferrario CM, Stump CS (2008) Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Physiol Endocrinol Metab 294:E345–E351PubMedCrossRefGoogle Scholar
  44. 44.
    Green CJ, Macrae K, Fogarty S, Hardie DG, Sakamoto K, Hundal HS (2011) Counter modulation of fatty acid-induced proinflammatory NFkB signalling in rat skeletal muscle cells by AMPK. Biochem J 435:463–474PubMedCrossRefGoogle Scholar
  45. 45.
    Kim JK, Kim J, Fillmore JJ, Chen Y, Moore I, Lee J, Yuan M, Li ZW, Karin M, Perret P, Shoelson SE, Shulman GI (2001) Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 108:437–446PubMedGoogle Scholar
  46. 46.
    Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, Pisconti A, Palomba L, Cantoni O, Clementi E, Moncada S, Carruba MO, Nisoli E (2006) TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest 116:2791–2798PubMedGoogle Scholar
  47. 47.
    Spriet LL, Heigenhauser GJ (2002) Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exerc Sport Sci Rev 30:91–95PubMedCrossRefGoogle Scholar
  48. 48.
    Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546:851–858.PubMedCrossRefGoogle Scholar
  49. 50.
    Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M (2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol 106:929–934PubMedCrossRefGoogle Scholar
  50. 51.
    Little JP, Safdar A, Cermak N, Tarnopolsky MA, Gibala MJ (2010) Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 298:R912–R917PubMedCrossRefGoogle Scholar
  51. 52.
    Schrauwen P, Hesselink MK (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53:1412–1417PubMedCrossRefGoogle Scholar
  52. 53.
    Summers SA (2010) Sphingolipids and insulin resistance: the five Ws. Curr Opin Lipidol 21:128–135PubMedCrossRefGoogle Scholar
  53. 54.
    Muoio DM (2010) Intramuscular triacylglycerol and insulin resistance: guilty as charged or wrongly accused? Biochim Biophys Acta 1801:281–288PubMedGoogle Scholar
  54. 55.
    Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55 Suppl 2:S9–S15PubMedCrossRefGoogle Scholar
  55. 56.
    Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950PubMedCrossRefGoogle Scholar
  56. 57.
    Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14PubMedCrossRefGoogle Scholar
  57. 58.
    Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593PubMedCrossRefGoogle Scholar
  58. 59.
    Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, Højlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599PubMedCrossRefGoogle Scholar
  59. 60.
    Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ (2007) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92:1467–1473PubMedCrossRefGoogle Scholar
  60. 61.
    Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796PubMedCrossRefGoogle Scholar
  61. 62.
    Ritov VB, Menshikova EV, Azuma K, Wood R, Toledo FG, Goodpaster BH, Ruderman NB, Kelley DE (2010) Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab 298:E49–E58PubMedCrossRefGoogle Scholar
  62. 63.
    Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRefGoogle Scholar
  63. 64.
    Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, Finlayson J, DeFronzo RA, Jenkinson CP, Mandarino LJ (2005) Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 280:10290–10297PubMedCrossRefGoogle Scholar
  64. 65.
    Bajaj M, Medina-Navarro R, Suraamornkul S, Meyer C, DeFronzo RA, Mandarino LJ (2007) Paradoxical changes in muscle gene expression in insulin-resistant subjects after sustained reduction in plasma free fatty acid concentration. Diabetes 56:743–752PubMedCrossRefGoogle Scholar
  65. 66.
    Chavez AO, Kamath S, Jani R, Sharma LK, Monroy A, Abdul-Ghani MA, Centonze VE, Sathyanarayana P, Coletta DK, Jenkinson CP, Bai Y, Folli F, DeFronzo RA, Tripathy D (2010) Effect of short-term free fatty acids elevation on mitochondrial function in skeletal muscle of healthy individuals. J Clin Endocrinol Metab 95:422–429PubMedCrossRefGoogle Scholar
  66. 67.
    Rabøl R, Højberg PM, Almdal T, Boushel R, Haugaard SB, Madsbad S, Dela F (2009) Effect 8 Muscle Biopsy To Investigate Mitochondrial Turnover 83 of hyperglycemia on mitochondrial respiration in type 2 diabetes. J Clin Endocrinol Metab 94:1372–1378PubMedCrossRefGoogle Scholar
  67. 68.
    Toledo FG, Menshikova EV, Azuma K, Radiková Z, Kelley CA, Ritov VB, Kelley DE (2008) Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes 57:987–994PubMedCrossRefGoogle Scholar
  68. 69.
    Phielix E, Meex R, Moonen-Kornips E, Hesselink MK, Schrauwen P (2010) Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53:1714–1721PubMedCrossRefGoogle Scholar
  69. 70.
    Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ (2006) Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 291:E99–E107PubMedCrossRefGoogle Scholar
  70. 71.
    Bordenave S, Metz L, Flavier S, Lambert K, Ghanassia E, Dupuy AM, Michel F, Puech-Cathala AM, Raynaud E, Brun JF, Mercier J (2008) Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity. Effect of endurance training in type 2 diabetes. Diabetes Metab 34:162–168PubMedCrossRefGoogle Scholar
  71. 72.
    Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM, Nair KS (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896PubMedCrossRefGoogle Scholar
  72. 73.
    Sartorio A, Fontana P, Trecate L, Lafortuna CL (2003) Short-term changes of fatigability and muscle performance in severe obese patients after an integrated body mass reduction program. Diabetes Nutr Metab 16:88–93PubMedGoogle Scholar
  73. 74.
    Sartorio A, Narici MV, Fumagalli E, Faglia G, Lafortuna CL (2001) Aerobic and anaerobic performance before and after a short-term body mass reduction program in obese subjects. Diabetes Nutr Metab 14:51–57PubMedGoogle Scholar
  74. 75.
    Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci U S A 100:7996–8001PubMedCrossRefGoogle Scholar
  75. 76.
    Asmann YW, Stump CS, Short KR, Coenen-Schimke JM, Guo Z, Bigelow ML, Nair KS (2006) Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes 55:3309–3319PubMedCrossRefGoogle Scholar
  76. 77.
    Hoeks J, van Herpen NA, Mensink M, Moonen-Kornips E, van Beurden D, Hesselink MK, Schrauwen P (2010) Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance. Diabetes 59:2117–2125PubMedCrossRefGoogle Scholar
  77. 78.
    Østergård T, Andersen JL, Nyholm B, Lund S, Nair KS, Saltin B, Schmitz O (2006) Impact of exercise training on insulin sensitivity, physical fitness, and muscle oxidative capacity in firstdegree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab 290:E998–E1005PubMedCrossRefGoogle Scholar
  78. 79.
    Nair KS, Bigelow ML, Asmann YW, Chow LS, Coenen-Schimke JM, Klaus KA, Guo ZK, Sreekumar R, Irving BA (2008) Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 57:1166–1175PubMedCrossRefGoogle Scholar
  79. 80.
    Choi CS, Befroy DE, Codella R, Kim S, Reznick RM, Hwang YJ, Liu ZX, Lee HY, Distefano A, Samuel VT, Zhang D, Cline GW, Handschin C, Lin J, Petersen KF, Spiegelman BM, Shulman GI (2008) Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci U S A 105:19926–19931PubMedCrossRefGoogle Scholar
  80. 81.
    Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761PubMedGoogle Scholar
  81. 82.
    Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB (1995) The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 95:2111–2119PubMedCrossRefGoogle Scholar
  82. 83.
    Melov S, Shoffner JM, Kaufman A, Wallace DC (1995) Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 23:4122–4126 84 R. BarazzoniPubMedCrossRefGoogle Scholar
  83. 84.
    Rooyackers OE, Adey DB, Ades PA, Nair KS (1996) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci U S A 93:15364–15369PubMedCrossRefGoogle Scholar
  84. 85.
    Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A 102:5618–5623PubMedCrossRefGoogle Scholar
  85. 86.
    Kouidi E, Albani M, Natsis K, Megalopoulos A, Gigis P, Guiba-Tziampiri O, Tourkantonis A, Deligiannis A (1998) The effects of exercise training on muscle atrophy in haemodialysis patients. Nephrol Dial Transplant 13:685–699PubMedCrossRefGoogle Scholar
  86. 87.
    Gosker HR, Schrauwen P, Broekhuizen R, Hesselink MK, Moonen-Kornips E, Ward KA, Franssen FM, Wouters EF, Schols AM (2006) Exercise training restores uncoupling protein-3 content in limb muscles of patients with chronic obstructive pulmonary disease. Am J Physiol Endocrinol Metab 290:E976–E981PubMedCrossRefGoogle Scholar
  87. 88.
    Tyni-Lenné R, Gordon A, Jansson E, Bermann G, Sylvén C (1997) Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 80:1025–1029PubMedCrossRefGoogle Scholar
  88. 89.
    Gielen S, Adams V, Linke A, Erbs S, Möbius-Winkler S, Schubert A, Schuler G, Hambrecht R (2005) Exercise training in chronic heart failure: correlation between reduced local inflammation and improved oxidative capacity in the skeletal muscle. Eur J Cardiovasc Prev Rehabil 12:393–400PubMedCrossRefGoogle Scholar
  89. 90.
    Fredriksson K, Tjäder I, Keller P, Petrovic N, Ahlman B, Schéele C, Wernerman J, Timmons JA, Rooyackers O (2008) Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS One 3:e3686PubMedCrossRefGoogle Scholar
  90. 91.
    Adey D, Kumar R, McCarthy JT, Nair KS (2000) Reduced synthesis of muscle proteins in chronic renal failure. Am J Physiol Endocrinol Metab 278:E219–E225PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly

Personalised recommendations