Excessive Nutrients and Regional Energy Metabolism

  • Gianluca PerseghinEmail author


There is general agreement that type 2 diabetes is the consequence of insulin resistance, defined as an impaired ability of insulin to control hepatic and peripheral glucose metabolism, and of compromised pancreatic β-cell function such that insulin secretion is insufficient to compensate the degree of insulin resistance [1]. The pivotal role of insulin resistance is confirmed by the fact that it is a consistent finding in patients with type 2 diabetes. Indeed, insulin resistance may be detected 10–20 years before the onset of overt hyperglycemia and prospective studies have demonstrated that it is the best predictor of whether an individual will later become diabetic [2].


Insulin Resistance Nonalcoholic Fatty Liver Disease Myotonic Dystrophy Type Intramyocellular Lipid Regional Energy Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weyer C, Bogardus C, Mott DM, Pratley RE (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104: 787–794PubMedCrossRefGoogle Scholar
  2. 2.
    De Fronzo RA (1988) The triumvirate beta-cell, muscle, live. A collusion responsible for NIDDM. Diabetes 37: 667–687Google Scholar
  3. 3.
    McGarry JD (1992) What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258: 766–770PubMedCrossRefGoogle Scholar
  4. 4.
    McGarry JD (2002) Dysregulation of fatty acids metabolism in the etiology of type 2 diabetes. Banting Lecture 2001. Diabetes 51: 7–18PubMedCrossRefGoogle Scholar
  5. 5.
    Reaven GM (1995) The fourth musketeer — from Alexandre Dumas to Claude Bernard. Diabetologia 38:3–13PubMedCrossRefGoogle Scholar
  6. 6.
    Perseghin G, Ghosh S, Gerow K, Shulman GI (1997) Metabolic defects in lean nondiabetic offspring of NIDDM parents. A cross-sectional study. Diabetes 46: 1001–1009.PubMedCrossRefGoogle Scholar
  7. 7.
    Roden M, Price TB, Perseghin G, et al (1996) Mechanism of free fatty acid induced insulin resistance in humans. J Clin Invest 97: 2859–286PubMedCrossRefGoogle Scholar
  8. 8.
    Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322: 223–228PubMedCrossRefGoogle Scholar
  9. 9.
    Perseghin G, Price TB, Petersen KF, et al (1996) Increased glucose transport/phosphorylation and muscle glycogen synthesis after exercise training in insulin resistant subjects. N Engl J Med 335: 1357–1362PubMedCrossRefGoogle Scholar
  10. 10.
    Krssak M, Falk Petersen K, Dresner A, et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42: 113–116PubMedCrossRefGoogle Scholar
  11. 11.
    Perseghin G, Scifo P, De Cobelli F, et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C NMR spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48: 1600–1606PubMedCrossRefGoogle Scholar
  12. 12.
    Jacob S, Machann J, Rett K, et al (1999) Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48: 1113–1119PubMedCrossRefGoogle Scholar
  13. 13.
    Perseghin G, Lattuada G, Danna M, et al (2003) Insulin resistance, intramyocellular lipid content and plasma adiponectin concentrations in patients with type 1 diabetes. Am J Physiol Endocrinol Metab 285: E1174–E1181PubMedGoogle Scholar
  14. 14.
    Greco AV, Mingrone G, Giancaterini A, et al (2002) Insulin resistance in morbid obesità. Reversal with intramyocellular fat depletion. Diabetes 51: 144–151PubMedCrossRefGoogle Scholar
  15. 15.
    Perseghin G, Scifo P, Pagliato E, et al (2001) Gender factors affect fatty acids-induced insulin resistance in nonobese humans: effects of oral steroidal contraception. J Clin Endocrinol Metab 86: 3188–3196PubMedCrossRefGoogle Scholar
  16. 16.
    Thamer C, Machann J, Bachmann O, et al (2003) Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 88: 1785–1791PubMedCrossRefGoogle Scholar
  17. 17.
    Perseghin G, Comola M, Scifo P, et al (2004) Postabsorptive and insulin-stimulated energy and protein metabolism in patients with Myotonic Dystrophy type 1. Am J Clin Nutr 80: 357–364PubMedGoogle Scholar
  18. 18.
    Szczepaniak LS, Dobbins RL, Metzger GJ, et al (2003) Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 49:417–423PubMedCrossRefGoogle Scholar
  19. 19.
    Reingold JS, McGavock JM, Kaka S, Tillery T, Victor RG, Szczepaniak LS (2005) Determination of triglyceride in the human myocardium using magnetic resonance spectroscopy: reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab 289:E935–939PubMedCrossRefGoogle Scholar
  20. 20.
    McGavock JM, Victor RG, Unger RH, Szczepaniak LS (2006) Adiposity of the heart, revisited. Ann Intern Med 144:517–524PubMedGoogle Scholar
  21. 21.
    Kankaanpaa M, Lehto H-R, Parkka JP, et al (2006) Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. J Clin Endocrinol Metab 91: 4689–4695PubMedCrossRefGoogle Scholar
  22. 22.
    Sharma S, Adrogue JV, Golfman L, et al (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18:1692–700PubMedCrossRefGoogle Scholar
  23. 23.
    Marchington JM, Mattacks CA, Pond CM (1989) Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B 94:225–232PubMedGoogle Scholar
  24. 24.
    Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2:536–543PubMedCrossRefGoogle Scholar
  25. 25.
    Marchesini G, Brizi M, Bianchi G, et al (2001) Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50: 1844–1850PubMedCrossRefGoogle Scholar
  26. 26.
    Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC (2003) Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 285: E906–E916PubMedGoogle Scholar
  27. 27.
    Marchesini G, Bugianesi E, Forlani G, et al (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37: 917–923PubMedCrossRefGoogle Scholar
  28. 28.
    Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI (2005) Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycaemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54: 603–608PubMedCrossRefGoogle Scholar
  29. 29.
    Seppala-Lindroos A, Vehkavaara S, Hakkinen A-M, et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum frre fatty acids independent of obesity an normal men. J Clin Endocrinol Metab 87: 3023–3028PubMedCrossRefGoogle Scholar
  30. 30.
    Perseghin G, Bonfanti R, Magni S, et al (2006) Insulin resistance and whole body energy homeostasis in obese adolescents with fatty liver disease. Am J Physiol Endocrinol Metab 291: E697–E703PubMedCrossRefGoogle Scholar
  31. 31.
    Brechtel K, Dahl DB, Machann J, et al (2001) Fast elevation of the intramyocellular lipid content in the presence of circulating free fatty acids and hyperinsulinemia: a dynamic 1HMRS study. Magn Reson Med 45: 179–183PubMedCrossRefGoogle Scholar
  32. 32.
    Bachmann OP, Dahl DB, Brechtel K, et al (2001) Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes 50: 2579–2584PubMedCrossRefGoogle Scholar
  33. 33.
    Poynten AM, Gan SK, Kriketos AD, et al (2003) Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content. Metabolism 52: 699–704PubMedCrossRefGoogle Scholar
  34. 34.
    Belfort R, Harrison SA, Brown K, et al (2006) A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355: 2297–307PubMedCrossRefGoogle Scholar
  35. 35.
    Holt HB, Wild SH, Wood PJ, et al (2006) Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects. Diabetologia 49: 141–148PubMedCrossRefGoogle Scholar
  36. 36.
    Donnelly KL, Smith CI, Schwarzberg SJ, et al (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115: 1343–1361PubMedGoogle Scholar
  37. 37.
    Diraison F, Moulin P, Beylot M (2003) Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglycefide synthesis during nonalcoholic fatty liver disease. Diabet Metab 29: 478–485CrossRefGoogle Scholar
  38. 38.
    Utzschneider KM, Kahn SE (2006) The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 91: 4753–4761PubMedCrossRefGoogle Scholar
  39. 39.
    Coldberg SR, Simoneau JA, Thaete FL, Kelley DE (1995) Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Invest 95: 1846–1853CrossRefGoogle Scholar
  40. 40.
    Kelley DE, Goodpaster B, Wing RR, Simoneau (1999) J-A Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity and weight loss. Am J Physiol Endocrinol & Metab 277: E1130–E1141Google Scholar
  41. 41.
    Blaak EE, Wagenmakers AJM, Glatz JFC, et al (2000) Plasma FFA utilization and fatty acidbinding protein content are diminished in type 2 diabetic muscle. Am J Physiol Endocrinol & Metab 279: E146–E154Google Scholar
  42. 42.
    Blaak EE, Wolffenbuttel BH, Saris WH, Pelsers MM, Wagenmakers AJ (2001) Weight reduction and the impaired plasma-derived free fatty acid oxidation in type 2 diabetic subjects. J Clin Endocrinol Metab 86: 1638–1644PubMedCrossRefGoogle Scholar
  43. 43.
    Mensink M, Blaak EE, van Baak MA, Wagenmakers AJ, Saris WH (2001) Plasma free Fatty Acid uptake and oxidation are already diminished in subjects at high risk for developing type 2 diabetes. Diabetes 50: 2548–2554PubMedCrossRefGoogle Scholar
  44. 44.
    Luzi L, Perseghin G, Tambussi G, et al (2003) Intramyocellular lipid accumulation and reduced whole body lipid oxidation in HIV infected patients with lipodystrophy. Am J Physiol Endocrinol & Metab 284: E274–E280Google Scholar
  45. 45.
    Perseghin G, Scifo P, Danna M, et al (2002) Normal insulin sensitivity and IMCL content in overweight humans are associated with higher fasting lipid oxidation. Am J Physiol Endocrinol & Metab 283: E556–E564Google Scholar
  46. 46.
    Goodpaster BH, Katsiaras A, Kelley DE (2003) Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 52: 2191–2197PubMedCrossRefGoogle Scholar
  47. 47.
    Gan SK, Kriketos AD, Ellis BA, Thompson CH, Kraegen EW, Chisholm DJ (2003) Changes in aerobic capacity and visceral fat but not myocyte lipid levels predict increased insulin action after exercise in overweight and obese men. Diabetes Care 26: 1706–1713PubMedCrossRefGoogle Scholar
  48. 48.
    Lattuada G, Costantino F, Caumo A, et al (2005) Reduced whole body lipid oxidation is associated with insulin resistance but not with intramyocellular lipid content in offspring of type 2 diabetic patients. Diabetologia 48: 741–747PubMedCrossRefGoogle Scholar
  49. 49.
    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350: 664–671PubMedCrossRefGoogle Scholar
  50. 50.
    He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50: 817–823PubMedCrossRefGoogle Scholar
  51. 51.
    Gaster M, Rustan AC, Aas V, Beck-Nielsen H (2004) Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin. Evidence from cultured myotubes. Diabetes 53: 542–548PubMedCrossRefGoogle Scholar
  52. 52.
    Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51: 2944–2950PubMedCrossRefGoogle Scholar
  53. 53.
    Petersen KF, Befroy D, Dufour S, et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300: 1140–1142PubMedCrossRefGoogle Scholar
  54. 54.
    Schrauwen P, Hesselink MKC (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53: 1412–1417PubMedCrossRefGoogle Scholar
  55. 55.
    Ek J, Andersen G, Urhammer SA, et al (2001) Mutation analysis of peroxisome proliferatoractivated receptor-gamma coactivator-1 (PGC-1. and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia 44: 2220–2226PubMedCrossRefGoogle Scholar
  56. 56.
    Muller YL, Bogardus C, Beamer BA, Shuldiner AR, Baier LJ (2003) A functional variant in the peroxisome proliferator-activated receptor gamma2 promoter is associated with predictors of obesity and type 2 diabetes in Pima Indians. Diabetes 52:1864–1871PubMedCrossRefGoogle Scholar
  57. 57.
    Mootha VK, Lindgren CM, Eriksson KF, et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: 267–273PubMedCrossRefGoogle Scholar
  58. 58.
    Patti ME, Butte AJ, Crunkhorn S, et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Nat Acad Sci USA 100: 8466–8471PubMedCrossRefGoogle Scholar
  59. 59.
    Neubauer S (2007) Mechanisms of disease: the failing heart — an engine out of fuel. N Engl J Med 356: 1140–1151PubMedCrossRefGoogle Scholar
  60. 60.
    Bottomley PA (1994) MR Spectroscopy or the Human Heart: The Status and the Challenges. Radiology 191: 593–612PubMedGoogle Scholar
  61. 61.
    Beyerbacht HP, Vliegen HV, Lamb HJ, et al (1996) Phosphorus magnetic resonance spectroscopy of the human heart: current status and clinical implications. Eur Heart J 17: 1158–66PubMedGoogle Scholar
  62. 62.
    Forder JR, Pohost GM (2003) Cardiovascular nuclear magnetic resonance: basic and clinical applications. J Clin Invest 111: 1630–39PubMedGoogle Scholar
  63. 63.
    Scheuermann-Freestone M, Madsen PL, Manners D, et al (2003) Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107: 3040–3046PubMedCrossRefGoogle Scholar
  64. 64.
    Diamant M, Lamb HJ, Groeneveld Y, et al (2003) Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 42: 328–335PubMedCrossRefGoogle Scholar
  65. 65.
    Perseghin G, Fiorina P, De Cobelli F, et al (2005) Cross-sectional assessment of the effect of kidney and kidney-pancreas transplantation on resting left ventricular energy metabolism in type 1 diabetic-uremic patients: a 31P-MRS study. J Am Coll Cardiol 46: 1085–1092PubMedCrossRefGoogle Scholar
  66. 66.
    Perseghin G, Ntali G, De Cobelli F, et al (2007) Abnormal left ventricular energy metabolism in obese men with preserved systolic and diastolic functions is associated with insulin resistance. Diabetes Care 30: 1520–1527PubMedCrossRefGoogle Scholar
  67. 67.
    Fragasso G, Perseghin G, De Cobelli F, et al (2006) Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur Heart J 27: 942–948PubMedCrossRefGoogle Scholar
  68. 68.
    Fragasso G, Montano C, Perseghin G, et al (2006) Reduction of ischemic threshold in patients with stable coronary disease after meals of different composition: effects of partial inhibition of fatty acids oxidation. Am Heart J 151: 1238.e1–1238.e8CrossRefGoogle Scholar
  69. 69.
    Lee L, Campbell R, Scheuermann-Freestone M, et al (2005) Metabolic modulation with perhexiline in chronic heart failure. A randomized, controlled trial of short-term use of a novel treatment. Circulation 112:3280–3288PubMedCrossRefGoogle Scholar
  70. 70.
    Tuunanen H, Engblom E, Naum A, et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114: 2130–2137PubMedCrossRefGoogle Scholar
  71. 71.
    Perseghin G, Lattuada G, De Cobelli F, et al (2005) Reduced intra-hepatic fat content is associated with increased whole body lipid oxidation in patients with type 1 diabetes. Diabetologia 48: 2615–2621PubMedCrossRefGoogle Scholar
  72. 72.
    Bugianesi E, Gastaldelli A, Vanni E, et al (2005) Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48: 634–642PubMedCrossRefGoogle Scholar
  73. 73.
    Perseghin G, Lattuada G, De Cobelli F, Ragogna F, Ntali G, Esposito A, Belloni E, Canu T, Terruzzi I, Scifo P, Del Maschio A, Luzi L (2007) Habitual physical activity is associated with the intra-hepatic fat content in humans. Diabetes Care 30: 683–688PubMedCrossRefGoogle Scholar
  74. 74.
    Iozzo P, Turpeinen AK, Takala T, et al (2004) Defective liver disposal of free fatty acids in patients with impaired glucose tolerance. J Clin Endocrinol Metab 89: 3496–3502PubMedCrossRefGoogle Scholar
  75. 75.
    Misu H, Takamura T, Matsuzawa N, et al (2007) Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes. Diabetologia 50:268–277PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Division of Metabolic and Cardiovascular SciencesIstituto Scientifico San RaffaeleMilanItaly
  2. 2.Department of Sport Sciences, Nutrition and HealthUniversity of MilanMilanItaly

Personalised recommendations