Skip to main content

Multiaxial Fatigue

  • Chapter
  • First Online:
  • 8704 Accesses

Abstract

Uniaxial loads are not that common as it would be expected. In most real cases stresses acting on a work piece or on a part of it are not uniaxial even dough the external load are uniaxial. It suffices to consider a component with a hole or a discontinuity where localized triaxial stress state develops. Besides the localized triaxiality, multiaxial loading represents the most general working condition for real components subjected to stresses acting simultaneously in different directions or, which is equivalent, to combined bending and torsion

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lanza, G.: Strength of shafting subjected to both twisting and bending. Trans ASME 8, 121–196 (1886)

    Google Scholar 

  2. Mason, W. (Ed.): Alternating stress experiments. IMechE (1917)

    Google Scholar 

  3. Haigh, B.P.: The thermodynamic theory of mechanical fatigue and hysteresis in metals. Rep. pp. 358–368. British Association for the Advancement of Science, Liverpool (1923)

    Google Scholar 

  4. Nishiara, T., Kawamoto, M.: The strength of metals under combined alternating bending and torsion. Memoirs, College of Engineering 10, Kyoto Imp. University, Japan (1941)

    Google Scholar 

  5. Gough, H.J.: Engineering steels under combined cyclic and static stresses. J. Appl. Mech. 72, 113–125 (1950)

    Google Scholar 

  6. Gough, H.J., Pollard, H.V., Clenshaw, W.J.: Some experiments on the resistance of metals to fatigue under combined stresses. Aero Research Council, RSM 2522, Part 1, H.M.S.O., London (1951)

    Google Scholar 

  7. Radaj, D., Sonsino, C.M.: Fatigue assessment of welded joints by local approaches. Abington Publishing, Cambridge (1998)

    Google Scholar 

  8. Gough, H.J.: The fatigue of metals. Scott, Greenwood and Son, London (1924)

    Google Scholar 

  9. Moore, H.F., Kommers, J.B.: The fatigue of metals. McGraw-Hill, New York (1927)

    Google Scholar 

  10. Cazaud, R.: Fatigue of Metals. Chapmann and Hall, London (1953)

    Google Scholar 

  11. Mann, J.Y.: Fatigue notch sensitivity of annealed copper. Proc. ASTM 60, 602 (1956)

    Google Scholar 

  12. Snow, A.L., Langer, B.F.: Low-cycle fatigue of large diameter bolts. J. Eng. Ind. 89(B-1), 53 (1967)

    Article  Google Scholar 

  13. Forrest P.G., Tate A.E.L.: The influence of grain size on the fatigue behavior of 70/30 Brass. J. Inst. Met. 93, 438 (1964–1965)

    Google Scholar 

  14. Frost, N.E., Marsh, K.J., Pook, L.P.: Metal Fatigue. Clarendon Press, Oxford (1974)

    Google Scholar 

  15. Bundy, R.W., Marin, J.: Fatigue strength of 14S-T4 aluminum alloy subjected to biaxial stresses. Proc. Am. Soc. Test. Mater. 52, 755 (1954)

    Google Scholar 

  16. Savaidis, G., Seeger, T.: Consideration of multiaxiality in fatigue life prediction using the closure concept. Fatigue Fract. Engng. Mater. Struct. 20(7), 985–1000 (1997)

    Article  Google Scholar 

  17. Papadopulos, I.V., Davoli, P., Gorla, C., Filippini, M., Bernasconi, A.: A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 19, 219–235 (1996)

    Article  Google Scholar 

  18. Manson, S.S., Halford, G.R.: Multiaxial low-cycle fatigue of type 304 stainless steel. ASME J. Engng. Mater. Techn, 283–285 (1977)

    Google Scholar 

  19. Zamrik, S.Y., Mirdamadi, M., Davis, D.C.: A proposed model for biaxial fatigue analysis using the triaxiality factor concept. Adv. Multiaxial fatigue ASTM STP 1191, 85–106 (1993)

    Article  Google Scholar 

  20. Marin J.: Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineering, pp. 184–194, London (1956)

    Google Scholar 

  21. Sines, G.: Behavior of metals under complex static and alternating stresses. In: Sines, G., Waisman, J.L. (eds.) Metal fatigue, pp. 145–169. McGraw-Hill, New York (1959)

    Google Scholar 

  22. Sines, G., Ohgi, G.: Fatigue criteria under combined stresses or strains. Trans. ASTM J. Engng. Mater. Technol 103, 82 (1891)

    Article  Google Scholar 

  23. Crossland B.: Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineering, pp. 138–149, London (1956)

    Google Scholar 

  24. Kakuno, H., Kawada, Y.: A new criterion of fatigue strength of a round bar subjected to combined static and repeated bending and torsion. Fatigue Eng. Mater. Struct. 2, 229–236 (1979)

    Article  Google Scholar 

  25. Papadopoulos, I.V.: A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals. Int. J. of Fatigue 16, 377–384 (1994)

    Article  Google Scholar 

  26. You, B.R., Lee, S.B.: A critical review on multiaxial fatigue assessments of metals. Int. J. of Fatigue 18, 235–244 (1996)

    Article  Google Scholar 

  27. Kaufman, R.P., Topper, T.: The influence of static mean stresses applied normal to the maximum shear planes in multiaxial fatigue. In: Carpinteri A., de Freitas M., Spagnoli A. (Eds.): Biaxial/Multiaxial fatigue and fracture. Elsevier, Oxford, 133 (2003)

    Google Scholar 

  28. Findley, W.N.: A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. Trans. ASME, J. Eng. Industry 81, 301–306 (1959)

    Google Scholar 

  29. Meggiolaro, M.A., de Castro J.T.P., de Olivera Miranda, A.C.: Evaluation of multiaxial stress-strain models and fatigue life prediction methods under proportional loadings. In: da Costa, M., Alves, M. (Eds.): Mechanics of solids in Brazil. Brazilian Soc. of Mech. Sci. Engn. (2009)

    Google Scholar 

  30. Matake, T.: An explanation on fatigue limit under combined stress. Bull. JSME 20, 257–263 (1977)

    Article  Google Scholar 

  31. Brown, M.W., Miller, K.J. (Eds.): A theory for fatigue under multiaxial stress strain condition. Inst. Mech. Eng. 745–755 (1973)

    Google Scholar 

  32. Fatemi, A., Socie, D.F.: A critical plane approach to multiaxial fatigue damage including out-phase loading. Fatigue Fract. Engng. Mater. Struct. 11, 149–165 (1988)

    Article  Google Scholar 

  33. Smith, R.N., Watson, P., Topper, T.H.: A stress-strain parameter for the fatigue of metals. J. Mater. 5(4), 767–778 (1970)

    Google Scholar 

  34. McDiarmid, D.L.: A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 14, 429–454 (1991)

    Article  Google Scholar 

  35. McDiarmid, D.L.: A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 17, 1475 (1994)

    Article  Google Scholar 

  36. Fatemi, A., Stephens, R.I.: Biaxial fatigue of 1045 steel under in-phase and 90° out-of-phase loading. SAE AEXX: multiaxial fatigue (1987)

    Google Scholar 

  37. Zamrik, S.Y., Frishmuth, R.E.: The effect of out-of-phase biaxial strain cycling on low cycle fatigue. J. Exp. Mech. 13, 204–208 (1973)

    Article  Google Scholar 

  38. Kanazawa, K., Miller, K.J., Brown, M.V.: Low cycle fatigue under out-of-phase loading conditions. J. Engng Mater. Tech. 99, 222–228 (1977)

    Article  Google Scholar 

  39. Socie, D.F.: Multiaxial fatigue damage models. J. Engng Mater. Tech. 109, 293–298 (1987)

    Article  Google Scholar 

  40. Carpinteri, A., Spagnoli, A.: Multiaxial high-cycle fatigue criterion for hard metals. Int. J. Fatigue 23, 135–145 (2001)

    Article  Google Scholar 

  41. Papadopoulos, I.V., Davoli, P., Gorla, C., Fillippini, M., Bernasconi, A.: A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 19(3), 219–235 (1997)

    Article  Google Scholar 

  42. Kanazawa, K., Miller, K.J., Brown, M.W.: Cyclic deformation of 1 % Cr-Mo-V steel under out-of-phase loads. Fatigue Eng. Mater. Struct. 2, 217–228 (1979)

    Article  Google Scholar 

  43. Socie, D.F., Marquis, G.B.: Multiaxial fatigue, p. 101. SAE, Inc, Warrendale (2000)

    Google Scholar 

  44. Itoh, T., Sakane, M., Ohnami, M., Socie, D.F.: Non-proportional low cycle fatigue criterion for type 304 stainless steel. ASME J. Eng. Mater. Technol 117, 285–292 (1995)

    Article  Google Scholar 

  45. Kida, S., Itoh, T., Sakane, M., Ohnami, M., Socie, D.F.: Dislocation structure and non-proportional hardening of type 304 stainless steel. Fatigue Fract. Eng. Mater. Struct. 20, 1375–1386 (1997)

    Article  Google Scholar 

  46. Itoh, T., Kameoka, M., Obataya, Y.: A new model for describing a stable cyclic stress-strain relationship under non-proportional loading based on activation state of slip systems. Fatigue Fract. Eng. Mater. Struct. 27, 957–966 (2004)

    Article  Google Scholar 

  47. Shamsaei, N.: Fatigue life prediction under general multiaxial loading employing simple material properties. Advisor Ali Fatemi, SAE Fatigue Design and Evaluation committee Meeting, Chrysler Head. Tech. Center, October 19 (2010)

    Google Scholar 

  48. Borodii, M.V.: Obtaining a low-cycle fatigue strain criterion. Strength Mater. 33(3), 217–223 (2001)

    Article  Google Scholar 

  49. Borodii, M.V., Shukaev, S.M.: Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and life time. Int. J. Fatigue 29, 1184–1191 (2007)

    Article  MATH  Google Scholar 

  50. Shamsaei, N.: A dissertation entitled multiaxial fatigue and deformation including non-proportional hardening and variable amplitude loading effects, submitted to the graduate faculty as partial fulfillment of the requirements for the doctor of philosophy degree in engineering, The University of Toledo (2010)

    Google Scholar 

  51. Shamsaei, N., Fatemi, A.: Effect of hardness on multiaxial fatigue behavior and some simple approximations for steels. J. Fatigue Fract. Eng. Mater. Struct. 32, 631–646 (2009)

    Article  Google Scholar 

  52. Liu, J., Zenner, H.: Fatigue limit of ductile metals under multiaxial loading. In: Carpinteri, A., de Freitas, M., Spagnoli, A. (Eds.): Biaxial/Multiaxial fatigue and fracture, Elsevier, Oxford 147–164 (2003)

    Google Scholar 

  53. Heidenreich, R., Zenner, H., Richter, I.: Dauerschwingfestigkeit bei Mehrachsiger Beanspruchung. Forschungshefte FKM, Heft, Oxford, 105 (1983)

    Google Scholar 

  54. Lempp, W.: Festigkeitsverhalten von Stahlen bei Mehrachsiger Dauerschwingbeanspruchung durch Norrnalspannungen mit Uberlagerten Phasengleichen und Phasenverschobenen Schubspannungen. Diss. Uni. Stuttgart (1977)

    Google Scholar 

  55. Mielke, S.: Festigkeitsverhalten Metallischer Werkstoffe unter Zweiachsig Schwingender Beanspmchung mit Verschiedenen Spannungszeitverlaufen. Diss. RWTHAachen (1980)

    Google Scholar 

  56. Nishihara, T., Kawamoto, M.: The strength of metal under combined alternating bending and torsion with phase difference. Mem. of the College of Eng., Kyoto Imperial University, 11, 85 (1945)

    Google Scholar 

  57. Issler, L.: Festigkeitsverhalten Metallischer Werkstoffe bei Mehrachsiger Phasenverschobener Schwingbeanspruchung. Diss. Uni. Stuttgart (1973)

    Google Scholar 

  58. Bhongbhibhat, T.: Festigkeitsverhalten von Stiihlen unter Mehrachsiger Phasenverschobener Schwingbeanspruchung mit Unterschiedlichen Schwingungsformen und Frequenzen. Diss. Uni. Stuttgart (1986)

    Google Scholar 

  59. Neugebauer, J.: Fatigue strength of cast iron materials under multiaxial stresses of different frequencies. Report FB-175, Fraunhofer Institute für Betribsfestigkeit, Darmstadt (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Paolo Milella .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Milella, P.P. (2013). Multiaxial Fatigue. In: Fatigue and Corrosion in Metals. Springer, Milano. https://doi.org/10.1007/978-88-470-2336-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2336-9_9

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2335-2

  • Online ISBN: 978-88-470-2336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics