Skip to main content

Hyperosmolar Syndrome

  • Conference paper
  • 188 Accesses

Abstract

Because of the requirement for osmotic equilibrium between the cells and the extracellular fluid, any alteration in extracellular osmolality is accompanied by an identical change in intracellular osmolality, with a concomitant change in cellc volume and possibly in cell function [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lang F, Ritter M et al (1993) The biological significance of cell volume. Renal Physiol Biochem 16:48–56

    PubMed  CAS  Google Scholar 

  2. Snyder NA, Feigal DW, Arieff AI (1987) Hypernatremia in elderly patients: a heterogeneous, morbid and iatrogenic entity. Ann Int Med 107:309–314

    Article  PubMed  CAS  Google Scholar 

  3. Kinne RKH, Ruhfus B et al (1995) Renal organic osmolytes: signal transduction pathways and release mechanisms. In: De Santo NG, Capasso G. Acid base and electolyte balance. IISS Ed. Napoli, pp 237–242

    Google Scholar 

  4. Daugirdas JT, Kronfol NO et al (1989) Hyperosmolar coma: cellular dehydration and the serum sodium concentration. Ann Intern Med 110:855–857

    Article  PubMed  CAS  Google Scholar 

  5. Lewis SA, Donaldson P (1990) Ion channels and cell volume regulation: chaos in an organized system. News in Physiological Sciences 5:112–118

    Google Scholar 

  6. Schrier RW (1988) Pathogenesis of sodium and water retention in high output and low output cardiac failure, nephrotic syndrome, cirrhosis and pregnancy. N Engl J Med 319:1065–1073

    Article  PubMed  CAS  Google Scholar 

  7. Arieff AI, Guisado R (1976) Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int 10:104–111

    Article  PubMed  CAS  Google Scholar 

  8. Lien YHH, Shapiro JI et al (1990) Effects of hypernatremia on organic brain osmoles. J Clin Invest 85:1427–1433

    Article  PubMed  CAS  Google Scholar 

  9. Levine SN, Sanson TH (1989) Treatment of hyperglicaemic hyperosmolar non-ketotic syndrome. Drugs 38:462–472

    Article  PubMed  CAS  Google Scholar 

  10. Cruz Caudillo JC, Sabatini S (1995) Diabetic hyperosmolar syndrome. Nephron 69:201–210

    Article  PubMed  CAS  Google Scholar 

  11. Popli S, Leehey DJ et al (1990) Asymptomatic, non ketotic, severe hyperglycemia with hyponatremia. Arch Intern Med 150:1962–1964

    Article  PubMed  CAS  Google Scholar 

  12. Vin-Christian K, Arieff AI (1993) Diabetes insipidus, massive polyuria and hypernatremia leading to permanent brain damage. Am J Med 94:341–345

    Article  PubMed  CAS  Google Scholar 

  13. Elisaf M et al (1989) Survival after severe iatrogenic hypernatremia. Am J Kidney Disease 14:230–234

    CAS  Google Scholar 

  14. Lustman CC, Guerin JJ et al (1991) Hyperosmolar non ketotic syndrome associated with rhabdomyolysis and acute kidney failure. Diabetes Care 14:146–147

    PubMed  CAS  Google Scholar 

  15. Cserr HF, De Pasquale et al (1987) Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am J Physiol 253:F522-F526

    PubMed  CAS  Google Scholar 

  16. Wang LM, Tsai ST et al (1994) Rhabdomyolysis in diabetic emergencies. Diabetes Research Clinical Practice 26(3):209–214

    Article  CAS  Google Scholar 

  17. Smithline N, Gardner KD (1976) Gaps-anionic and osmolal. JAMA 236:1594–1597

    Article  PubMed  CAS  Google Scholar 

  18. Kruse JA (1992) Methanol poisoning. Intensive Care Med 391–397

    Google Scholar 

  19. Ayus JC, Krothapalli R, Freiberg M (1990) Role of hypercatabolism in mortality associated with chronic hypernatremia in rats. Kidney Int 36:263–266

    Google Scholar 

  20. Haussinger D, Roth E et al (1993) Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341:1330–1333

    Article  PubMed  CAS  Google Scholar 

  21. Garland A, Jordan JE et al (1995) Hypertonicity, but not hypotermia, elicits substance P release from rat C-fiber neurons in primary culture. J Clin Invest 95:66

    Article  Google Scholar 

  22. Richardson DW, Robinson AG (1985) Desmopressin. Ann Intern Med 103:228–233

    Article  PubMed  CAS  Google Scholar 

  23. Chanson P, Jedynak CP et al (1988) Management of early postoperative diabetes insipidus with parenteral desmopressin. Acta Endocrinol 117:513–519

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Italia

About this paper

Cite this paper

Schiraldi, F., Paladino, F. (1997). Hyperosmolar Syndrome. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2296-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2296-6_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75032-1

  • Online ISBN: 978-88-470-2296-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics